Sail E0 Webinar

11th And 12th > Mathematics

METHODS OF DIFFERENTIATION MCQs

Methods Of Differentiation

Total Questions : 55 | Page 5 of 6 pages
Question 41.


If f(x) = x + tan x and f is inverse of g, then g’(x) is equal to


  1.     11+(g(x)x)2
  2.     11(g(x)x)2
  3.     12+(g(x)x)2
  4.     12(g(x)x)2
 Discuss Question
Answer: Option C. -> 12+(g(x)x)2
:
C
Let y=f(x)x=f1(y)
then             f(x)=x+tanx
     x=f1(y)+tan(f1(y))
x=g(y)+tan(g(y)) or x=g(x)+tan(g(x))          (i)
Differentiating both sides, then we get
1=g(x)+sec2g(x).g(x)
g(x)=11+sec2(g(x))=11+1+tan2(g(x))
=12+(xg(x))2                 [from Eq.(i)]
12+(g(x)x)2
Question 42.


If x=secθcosθ,y=sec10θcos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to


  1.     1100
  2.     1
  3.     10
  4.     100
 Discuss Question
Answer: Option D. -> 100
:
D
x2+4=(secθcosθ)2+4=(secθ+cosθ)2         (i)Similarly,y2+4=(sec10θ+cos10θ)2            (ii)Now,dxdθ=secθtanθ+sinθ=tanθ(secθ+cosθ)and dydθ=10sec9θsecθtanθ10cos9θ(sinθ)=10tanθ(sec10θcos10θ)dydx=(dydθ)(dxdθ)=10tanθ(sec10θ+cos10θ)tanθ(secθ+cosθ)(dydx)2=100(sec10θ+cos10θ)(secθ+cosθ)2=100(y2+4)(x2+4)or      (x2+4)(dydx)2=100(y2+4)
On comparing with the expression given we get k = 100
Question 43.


If y=ln(xa+bx)x,then x3d2ydx2 is equal to


  1.     (dydx+x)2
  2.     (dydxy)2
  3.     (xdydx+y)2
  4.     (xdydxy)2
 Discuss Question
Answer: Option D. -> (xdydxy)2
:
D
y=ln(xa+bx)x=x(ln xln(a+bx))
or (yx)=ln xln(a+bx)
Differentiating both sides w.r.t.x,then
xdydxy.1x2=1xba+bx=ax(a+bx)      (i)
or (xdydxy)=(axa+bx)
Again taking logarithm on both sides, then
ln(xdydxy)=ln (ax)ln(a+bx)
Differetiating both sides w.r.t.x, then
xd2ydx2+dydxdydx(xdydxy)=1xba+bx=ax(a+bx)=(xdydxy)x2           [From Eq.(i)]or      x3d2ydx2=(xdydxy)2
Question 44.


If y=(ax+bcx+d) , then 2dydx.d3ydx3 is equal to


  1.     (d2ydx2)2
  2.     3d2ydx2
  3.     3(d2ydx2)2
  4.     3d2xdy2
 Discuss Question
Answer: Option C. -> 3(d2ydx2)2
:
C
y=(ax+bcx+d)or c xy+dy=ax+b
Differentiating both sides w.r.t.x, then
c{xdydx+y.1}+ddydx=aor xdydx+y+(dc)dydx=(ac)
Again differentiating both sides w.r.t.x, then
or xd2ydx2+dydx+dydx+(dc)d2ydx2=0or x+2dydx(d2ydx2)+dc=0
Again differentiating both sides w.r.t.x, then
1+2(d2ydx2.d2ydx2dydx.d3ydx3)(d2ydx2)2+0=02dydx.d3ydx3=3(d2ydx2)2
Question 45.


If xy=exy then dydx=


  1.     (1+ln x)1
  2.     (1+ln x)2
  3.     ln x(1+ln x)2
  4.     None of these
 Discuss Question
Answer: Option C. -> ln x(1+ln x)2
:
C
Since, xy=exyy ln x=xyy=x1+ln xdydx=ln x(1+ln x)2
Question 46.


If x=ey+ey+ey+ey+


  1.     1x
  2.     1xx
  3.     x1+x
  4.     None of these
 Discuss Question
Answer: Option B. -> 1xx
:
B
x=ey+xloge x=y+x
1x=dydx+1
dydx=1xx
Question 47.


If xy.yx=16,then dydx at (2,2) is


  1.     - 1
  2.     0
  3.     1
  4.     None of these
 Discuss Question
Answer: Option A. -> - 1
:
A
xy.yx=16
 logexy+loge yx=loge 16
y loge x+x loge y=4 loge 2
Now, differentiating both sides w.r.t.x
yx+loge x dydx+xydydx+loge y.1=0
dydx=(loge y+yx)(loge x+xy)
 dydx|(2,2)=(loge 2+1)(loge 2+1)=1
Question 48.


If 5f(x) + 3f (1x) = x + 2 and y = x f(x), then (dydx)x=1 is equal to


  1.     14
  2.     78
  3.     1
  4.     None of these
 Discuss Question
Answer: Option B. -> 78
:
B
5f(x)+3f(1x)=x+2........(i)
Replacing x by1x
5f(1x)+3f(x)=1x+2...(ii)
From Eq.(i).
25f(x)+15f(1x)=5x+10....(iii)
and from Eq.(ii)
9f(x)+15f(1x)=3x+6.....(iv)
Subtracting Eq.(iv) from (iii), we get
16f(x)=5x3x+4
xf(x)=5x23+4x16=y
dydx=10x+416
dydx|x=1=10+416
=78
Question 49.


If 2x+2y=2x+y then the value of dydx at x=y=1 is


  1.     0
  2.     - 1 
  3.     1
  4.     2
 Discuss Question
Answer: Option B. -> - 1 
:
B
2x+2y=2x+y
2x.loge 2+2y.loge 2dydx=2x+y.loge 2(1+dydx)
dydx=2x+y2x2y2x+y
dydx|x=y=1=1
Question 50.


If f(x)=(logcotxtan x)(logtanxcot x)1+tan1(x(4x2)) then f'(0) is equal to


  1.     2
  2.     2
  3.     12
  4.     0
 Discuss Question
Answer: Option C. -> 12
:
C
f(x)=(logcotxtan x)(logtan xcot x)+tan1(x(4x2)) 
f(x)=1+tan1(x(4x2)) 
Now Put x=2sinθ, we get
f(x)=1+tan1(2sinθ44sin2θ)f(x)=1+tan1(2sinθ2cosθ)f(x)=1+tan1(tanθ)f(x)=1+θf(x)=1+sin1(x2)f(x)=0+11(x2)212f(0)=12

Latest Videos

Latest Test Papers