Sail E0 Webinar

11th And 12th > Mathematics

METHODS OF DIFFERENTIATION MCQs

Methods Of Differentiation

Total Questions : 55 | Page 2 of 6 pages
Question 11. If sin (x+y)=loge(x+y),thendydx is equal to
  1.    2
  2.    - 2
  3.    1
  4.    - 1
 Discuss Question
Answer: Option D. -> - 1
:
D
sin(x+y)=loge(x+y),
cos(x+y)(1+dydx)=1(x+y)(1+dydx)
(1+dydx)(cos(x+y)1x+y)=0
cos(x+y)1(x+y)0
1+dydx=0
dydx=1
Question 12. If x = a cos θ,y=b sin θ,then d3ydx3 is equal to
  1.    (−3ba3)cosec4θ cot4θ
  2.    (3ba3)cosec4θ cotθ
  3.    (−3ba3)cosec4θ cotθ
  4.    None of the above
 Discuss Question
Answer: Option C. -> (−3ba3)cosec4θ cotθ
:
C
x=acosθdxdθ=asinθandy=bsinθdydθ=bcosθdydx=bacotθd2ydx2=bacosec2θdθdx=ba2cosec3θd3ydx3=3ba2cosec2θ(cosecθcotθ)dθdx=3ba2cosec3θcotθ(1asinθ)=3ba3cosec4θcotθ
Question 13. If (1x2n)+(1y2n)=a(xnyn), then (1x2n1y2n)dydx is equal to
  1.    xn−1yn−1
  2.    yn−1xn−1
  3.    xy
  4.    1
 Discuss Question
Answer: Option A. -> xn−1yn−1
:
A
Putxn=sinθandyn=sinϕthen,(cosθ+cosϕ)=a(sinθsinϕ)2cos(θ+ϕ2)cos(θϕ2)=2acos(θ+ϕ2)sin(θϕ2)cot(θϕ2)=a(θϕ2)=cot1aθϕ=2cot1aorsin1xnsin1yn=2cot1aDifferentiatingbothsides,wehavenxn1(1x2n)nyn1(1y2n)dydx=0(1x2n1y2n)dydx=xn1yn1
Question 14. If y=x+y+x+y+...., then dydx is equal to
  1.    12y−1
  2.    y2−x2y3−2xy−1
  3.    (2y−1)
  4.    None of these
 Discuss Question
Answer: Option B. -> y2−x2y3−2xy−1
:
B
y=x+y+y
(y2x)=2y
or(y2x)2=2y
Differentiating both sides w.r.t. x, then
2(y2x)(2ydydx1)=2dydx
dydx=(y2x)2y32xy1
Question 15. If (1x6)+(1y6)=a(x3y3) and dydx=f(x,y)(1y61x6),then
  1.    f(x,y)=yx
  2.    f(x,y)=y2x2
  3.    f(x,y)=2y2x2
  4.    f(x,y)=x2y2
 Discuss Question
Answer: Option D. -> f(x,y)=x2y2
:
D
Putx3=sinθ,y3=sinϕ,
thencosθ+cosϕ=a(sinθsinϕ)
2cos(θ+ϕ2)cos(θϕ2) =2acos(θ+ϕ2)sin(θϕ2)
cot(θϕ2) = a
(θϕ2)=cot1a
sin1x3sin1y3=2cot1a
3x2(1x6)3y2(1y6)dydx=0
dydx=x2y2(1y61x6)
f(x,y)=x2y2
Question 16. If 5f(x) + 3f (1x) = x + 2 and y = x f(x), then (dydx)x=1 is equal to
  1.    14
  2.    78
  3.    1
  4.    None of these
 Discuss Question
Answer: Option B. -> 78
:
B
5f(x)+3f(1x)=x+2........(i)
Replacingxby1x
5f(1x)+3f(x)=1x+2...(ii)
FromEq.(i).
25f(x)+15f(1x)=5x+10....(iii)
andfromEq.(ii)
9f(x)+15f(1x)=3x+6.....(iv)
SubtractingEq.(iv)from(iii),weget
16f(x)=5x3x+4
xf(x)=5x23+4x16=y
dydx=10x+416
dydx|x=1=10+416
=78
Question 17. If y=sin x+sin x+sin x+.....,then dydx is equal to
  1.    2y−1cos x
  2.    cos x2y−1
  3.    2x−1cos x
  4.    cos x2x−1
 Discuss Question
Answer: Option B. -> cos x2y−1
:
B
y=sinx+yy2y=sinx
(2y1)dydx=cosx
Question 18. If y=(ax+bcx+d) , then 2dydx.d3ydx3 is equal to
  1.    (d2ydx2)2
  2.    3d2ydx2
  3.    3(d2ydx2)2
  4.    3d2xdy2
 Discuss Question
Answer: Option C. -> 3(d2ydx2)2
:
C
y=(ax+bcx+d)orcxy+dy=ax+b
Differentiating both sides w.r.t.x, then
c{xdydx+y.1}+ddydx=aorxdydx+y+(dc)dydx=(ac)
Again differentiating both sides w.r.t.x, then
orxd2ydx2+dydx+dydx+(dc)d2ydx2=0orx+2dydx(d2ydx2)+dc=0
Again differentiating both sides w.r.t.x, then
1+2(d2ydx2.d2ydx2dydx.d3ydx3)(d2ydx2)2+0=02dydx.d3ydx3=3(d2ydx2)2
Question 19. If xy.yx=16,then dydx at (2,2) is
  1.    - 1
  2.    0
  3.    1
  4.    None of these
 Discuss Question
Answer: Option A. -> - 1
:
A
xy.yx=16
logexy+logeyx=loge16
ylogex+xlogey=4loge2
Now, differentiating both sides w.r.t.x
yx+logexdydx+xydydx+logey.1=0
dydx=(logey+yx)(logex+xy)
dydx|(2,2)=(loge2+1)(loge2+1)=1
Question 20. If f(x)=(logcotxtan x)(logtanxcot x)1+tan1(x(4x2)) then f'(0) is equal to
  1.    −2
  2.    2
  3.    12
  4.    0
 Discuss Question
Answer: Option C. -> 12
:
C
f(x)=(logcotxtanx)(logtanxcotx)+tan1(x(4x2))
f(x)=1+tan1(x(4x2))
Now Put x=2sinθ, we get
f(x)=1+tan1(2sinθ44sin2θ)f(x)=1+tan1(2sinθ2cosθ)f(x)=1+tan1(tanθ)f(x)=1+θf(x)=1+sin1(x2)f(x)=0+11(x2)212f(0)=12

Latest Videos

Latest Test Papers