Sail E0 Webinar

11th And 12th > Mathematics

METHODS OF DIFFERENTIATION MCQs

Methods Of Differentiation

Total Questions : 55 | Page 3 of 6 pages
Question 21. If y=ln(xa+bx)x,then x3d2ydx2 is equal to
  1.    (dydx+x)2
  2.    (dydx−y)2
  3.    (xdydx+y)2
  4.    (xdydx−y)2
 Discuss Question
Answer: Option D. -> (xdydx−y)2
:
D
y=ln(xa+bx)x=x(lnxln(a+bx))
or(yx)=lnxln(a+bx)
Differentiating both sides w.r.t.x,then
xdydxy.1x2=1xba+bx=ax(a+bx)(i)
or(xdydxy)=(axa+bx)
Again taking logarithm on both sides, then
ln(xdydxy)=ln(ax)ln(a+bx)
Differetiating both sides w.r.t.x, then
xd2ydx2+dydxdydx(xdydxy)=1xba+bx=ax(a+bx)=(xdydxy)x2[FromEq.(i)]orx3d2ydx2=(xdydxy)2
Question 22. If x2+y2=t1t and x4+y4=t2+1t2,then x3ydydx equals
  1.    - 1
  2.    0 
  3.    1
  4.    None of these
 Discuss Question
Answer: Option C. -> 1
:
C
x2+y2=t1t
On squaring both the sides
=x4+y4+2x2y2 = t2+1t22
Given that -
x4+y4=t2+1t2
x2y2=1
x2.2ydydx+y2.2x=0
x3ydydx=x2y2=1
Question 23. If f(x) = x + tan x and f is inverse of g, then g’(x) is equal to
  1.    11+(g(x)−x)2
  2.    11−(g(x)−x)2
  3.    12+(g(x)−x)2
  4.    12−(g(x)−x)2
 Discuss Question
Answer: Option C. -> 12+(g(x)−x)2
:
C
Lety=f(x)x=f1(y)
thenf(x)=x+tanx
x=f1(y)+tan(f1(y))
x=g(y)+tan(g(y))orx=g(x)+tan(g(x))(i)
Differentiating both sides, then we get
1=g(x)+sec2g(x).g(x)
g(x)=11+sec2(g(x))=11+1+tan2(g(x))
=12+(xg(x))2[fromEq.(i)]
12+(g(x)x)2
Question 24. If f(x) = sin1(sin x)+cos1(sin x) and ϕ(x)=f(f(f(x))),then ϕ(x) is equal to
  1.    1
  2.    sin x
  3.    0
  4.    None of these
 Discuss Question
Answer: Option C. -> 0
:
C
f(x)=π2(aconstantfunction)
ϕ(x)=0
Question 25. If x=ey+ey+ey+ey+
  1.    1x
  2.    1−xx
  3.    x1+x
  4.    None of these
 Discuss Question
Answer: Option B. -> 1−xx
:
B
x=ey+xlogex=y+x
1x=dydx+1
dydx=1xx
Question 26.


If y = tan1(1+sinx1sinx),π2<x<π, then dydx equals


  1.     12
  2.     1
  3.     12
  4.     1
 Discuss Question
Answer: Option A. -> 12
:
A
y=tan1
(1cos(π2+x)1+cos(π2+x))
=tan1tan(π4+x2))(i)

Now,       π2<x<π
   π4<x2<π2
or       π2<π4+x2<3π4
       tan(π4+x2)=tan(π4+x2)        ( in second quadrant)
=tan{π(π4+x2)}
From Eq.(i),
y=tan1tan{π(π4+x2)}
=π(π4+x2)
=3π4x2
(principal value of tan1 x inπ2 to π2)
 dydx=12
Question 27.


If f(x) = |x|, then f’(x), where x 0 is equal to


  1.     1
  2.     0
  3.     1
  4.     |x|x
 Discuss Question
Answer: Option D. -> |x|x
:
D
f(x)={x,x0x,x<0f(x)=1,x>0,i.e,|x|x,x>01,x>0,i.e,|x|x,x>0=|x|x,x0
Question 28.


If (1x2n)+(1y2n)=a(xnyn), then (1x2n1y2n)dydx is equal to


  1.     xn1yn1
  2.     yn1xn1
  3.     xy
  4.     1
 Discuss Question
Answer: Option A. -> xn1yn1
:
A
Put xn=sin θ and yn=sin ϕthen,   (cosθ+cosϕ)=a(sinθsinϕ)2 cos(θ+ϕ2)cos(θϕ2)=2a cos(θ+ϕ2)sin(θϕ2)cot(θϕ2)=a(θϕ2)=cot1aθϕ=2cot1aor           sin1xnsin1yn=2 cot1aDifferentiating both sides,we havenxn1(1x2n)nyn1(1y2n)dydx=0           (1x2n1y2n)dydx=xn1yn1
Question 29.


If d2xdy2(dydx)3+d2ydx2=k, then k is equal to


  1.     0
  2.     1
  3.     2
  4.     None of these
 Discuss Question
Answer: Option A. -> 0
:
A
dydx=(dxdy)1d2ydx2=(dxdy)2{ddx(dxdy)}d2ydx2=(dxdy)2{ddy(dxdy)dydx}d2ydx2=(dydx)2{d2xdy2.dydx}d2ydx2=(dydx)3d2xdy2d2ydx2+(dydx)3d2xdy2=0
Question 30.


If y=(1+x)(1+x2)(1+x4)(1+x2n) then dydx at x = 0 is


  1.     0
  2.     -1
  3.     1
  4.     None of these
 Discuss Question
Answer: Option C. -> 1
:
C
Since,  y=(1+x)(1+x2)(1+x4)(1+x2n),(1x)y=(1x2)(1+x2)(1+x4)(1+x2n)=(1x4)(1+x4)(1+x2n+1)y=1x2n+1(1x)dydx=(1x)(2n+1.x2n)(1x2n+1)(1)(1x)2dydxx=0=(1)(0)(1)(1)(1)2=1

Latest Videos

Latest Test Papers