Sail E0 Webinar

11th Grade > Mathematics

SEQUENCES AND SERIES MCQs

Total Questions : 30 | Page 1 of 3 pages
Question 1.


A series in G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, then the common ratio will be equal to


  1.     2
  2.     3
  3.     4
  4.     5
 Discuss Question
Answer: Option C. -> 4
:
C

Let there be 2n terms in the given G.P. with first term a and the common ratio r.


Then, a  r21(r1) = 5a (r21)(r21) ⇒ r + 1 = 5 ⇒ r = 4


Question 2.


If the sum of the n terms of G.P. is S product is P and sum of their inverse is R, than  P2 is equal to


  1.     RS
  2.     SR
  3.     (RS)n
  4.     (SR)n
 Discuss Question
Answer: Option D. -> (SR)n
:
D

S=a(1rn)1rP=anrn(n1)2R=1a+1ar+1ar2++1arn1=1a(11rn)11r=1arn1(rn1r1)p2=a2nrn(n1)(SR)=a2nrn(n1)


Question 3.


Let S1, S2,....... be squares such that for each n≥1, the length


of a side of Sn equals the length of a diagonal of Sn+1. If the 


length of a  side of S1 is 10 cm, then for which of the following 


values of n is the area of Sn greater then 1sq cm


  1.     7
  2.     8
  3.     9
  4.     10
 Discuss Question
Answer: Option A. -> 7
:
A

(b, c, d) Given xn = xn+1 2


∴ x1x22x2x32xnxn+12


On multiplying x1xn+1 (2)n   ⇒ xn+1 =   x1(2)n


Hence  xn =   x1(2)n1


Area of Sn = x2nx2n2n1 < 1  ⇒  2n1x21   (x1 = 10)


∴ 2n1 > 100


But 27 > 100, 28>100, etc.


∴ n - 1 = 7, 8, 9.......  ⇒ n = 8, 9, 10.........


Question 4.


Harikiran purchased a house in Rs. 15000 and paid Rs. 5000 at once. Rest money he promised to pay in annual instalment of Rs. 1000 with 10% per annum interest. How much money is to be paid by him


  1.     Rs. 21555 
  2.     Rs. 20475
  3.     Rs. 20500
  4.     Rs. 20700
 Discuss Question
Answer: Option C. -> Rs. 20500
:
C

It will take 10 years for harikiran to pay off Rs. 10000 in 10 yearly


installments.


∵ He pays 10% annual interest on interest on remaining amount


∴ Money given in first year


= 1000 +  10000×10100 = Rs. 2000


Money given in second year = 1000 + interest of (10000 - 1000) with interest rate 10% per annum


= 1000 +  9000×10100 = Rs. 1900


Money paid  in third year = Rs. 1800 etc.


So money given by Jairam in 10 years will be Rs. 2000, Rs.1900, Rs. 1800, Rs. 1700,......,


which is in arithmetic progression,


whose first term a = 2000 and d = -100


Total money given in 10 years = sum of 10 terms of arithmetic 


progression


102[2(2000) + (10 - 1)(-100)] = Rs. 15500


Therefore, total money given by harikiran 


= 5000 + 15500 = Rs. 20500.


Question 5.


The sum of (n+1) terms of 11+11+2+11+2+3+.......... is


  1.     nn+1
  2.     2nn+1
  3.     2n(n+1)
  4.     2(n+1)n+2
 Discuss Question
Answer: Option D. -> 2(n+1)n+2
:
D

Tn=1[n(n+1)2]=2[1n1n+1]


  put n=1,2,3,.........,(n+1)


   T1=2[1112],T2=2[1213],...........,


   Tn+1=2[1n+11n+2]


Hence sum of (n+1) terms = n+1k=1Tk 


   Sn+1=2[11n+2]    Sn+1=2(n+1)n+2


 


Question 6.


The sum of the first n terms is  1234781516 + .......... is


  1.     2n - n - 1
  2.     1 -  2n
  3.     n +  2n - 1
  4.     2n - 1
 Discuss Question
Answer: Option C. -> n +  2n - 1
:
C

The sum of the first n terms is


Sn = (1 - 12) + (1 - 122) + (1 - 123) + (1 - 124  + ........... + (1 - 12n)


= n - { 12122 +............+  12n}


= n -  12(112n112) = n - (1 - 12n) = n - 1 +  2n.


Trick: Check for n = 1, 2 i.e., S112S254 and


(c)  ⇒ S1 =   12 and S2 = 2 +  22  - 1 =  54.


Question 7.


If the aritmetic, geometric and harmonic menas between two positive real numbers be A, G and H, then


  1.     A2 = GH
  2.     H2 = AG
  3.     G = AH
  4.     G2 = AH
 Discuss Question
Answer: Option D. -> G2 = AH
:
D

Let A = a+b2, G =ab and H = 2aba+b.


Then G2 = ab            ..................(i)


and AH = (a+b2).2aba+b = ab    ................(ii)


From (i) and (ii), we have G2 = AH


Question 8.


If (p+q)th term and (pq)th term of a G.P. be m and n, then the pth term will be ___.


  1.     mn
  2.     mn
  3.     mn
  4.     o
 Discuss Question
Answer: Option B. -> mn
:
B

Given that
ap+q=arp+q1=m and apq=arpq1=n.


m×n=arp+q1arpq1


                 =a2r2(p1) 


                 =(arp1)2


 mn=arp1=ap   


 Thus, the pth term of the GP is mn.


Aliter: Each term in a G.P. is the geometric mean of the terms equidistant from it. Here, (p+q)th and (pq)th terms are equidistant from the pth term. 
pth term (mn) will be G.M. of (p+q)th and (pq)th terms.


Question 9.



11.2
12.3
13.4 +.......+ .........
1n.(n+1) equals


  1.     1n(n+1)
  2.     nn+1
  3.     2nn+1
  4.     2n(n+1)
 Discuss Question
Answer: Option B. -> nn+1
:
B

(
11
12) + (
12
13) + (
13
14) + .........+ (
1n
1n+1)


= 1 - 
1n+1
nn+1


Question 10.


If πi=1i
n(n+1)2, then πi=1(3i2)


  1.     n(3n1)2
  2.     n(3n+1)2
  3.     n(3n + 2)
  4.     n(3n+1)4
 Discuss Question
Answer: Option A. -> n(3n1)2
:
A

πi=1 = 3πi=1i - 2 πi=11 = 3
n(n+1)2 - 2n = 
n(3n1)2


Latest Videos

Latest Test Papers