Sail E0 Webinar

Quantitative Aptitude

QUADRATIC EQUATIONS MCQs

Quadratic Equations, 10th And 12th Grade Quadratic Equations

Total Questions : 102 | Page 5 of 11 pages
Question 41. If the roots of the equation ax2+bx+c=0 beα and β,, then the roots of the equation cx2+bx+a=0 are 
  1.    −α,−β
  2.    α,1β
  3.    1α, 1β
  4.    None of these
 Discuss Question
Answer: Option C. -> 1α, 1β
:
C
α,β are roots ofax2+bx+c=0
α+β= baandαβ=ca
Let the roots of cx2+bx+a=0 be α',β', then
α ' + β '=bcandαβ=ac
but α+βαβ=baca=bc1α+1β=α+β
Hence α=1αandβ=1β
Question 42. If α and β are the roots of the equation x2+6x+λ=0 and 3α+2β=20, then λ = 
  1.    -8
  2.    -16
  3.    16
  4.    8
 Discuss Question
Answer: Option B. -> -16
:
B
α +β = -6 .....(i)
αβ =λ ......(ii)
and given 3α + 2β = -20 ......(iii)
Solving (i) and (iii), we getβ = 2,α = -8
Substituting these values in (ii), we getλ = -16
Question 43. If α and β are the roots of the equation 2x23x+4=0, then the equation whose roots are α2 and β2 is
  1.    4x2+7x+16=0
  2.    4x2+7x+6=0
  3.    4x2+7x+1=0
  4.    4x2−7x+16=0
 Discuss Question
Answer: Option A. -> 4x2+7x+16=0
:
A
α +β = 32 andαβ = 2
α2+β2=(α+β)22αβ=944=74
hence required equation x2(α2+β2)x+α2β2=0
x2+74x+4=04x2+7x+16=0
Question 44. If 2+i3 is a root of the equation x2+px+q=0, where p and q are real, then (p, q) = 
 
  1.    (-4,7)
  2.    (4,7)
  3.    (4,7)
  4.    (-4,-7)
 Discuss Question
Answer: Option A. -> (-4,7)
:
A
Since 2+i3 is a root, therefore 2i3 will be other root. Now sum of the roots = 4 = -p and product of roots = 7 = q. Hence (p, q) = (-4, 7).
Question 45. If one root of 5x2+13x+k=0 is reciprocal of the other, then k=
 
  1.    0
  2.    5
  3.    16
  4.    6
 Discuss Question
Answer: Option B. -> 5
:
B
Let first root =α and second root =1α
Product of roots =1
k5=1k=5
Question 46. If a root of the equation ax2+bx+c=0 be reciprocal of the equation then ax2+bx+c=0, then
  1.    (cc′−aa′)2=(ba′−cb′)(ab′−bc′).
  2.    (bb′−aa′)2=(ca′−bc′)(ab′−bc′).
  3.    (cc′−aa′)2=(ba′−cb′)(ab′−bc′).
  4.     (cc′+aa′)2=(ba′−cb′)(ab′−bc′). 
 Discuss Question
Answer: Option A. -> (cc′−aa′)2=(ba′−cb′)(ab′−bc′).
:
A
Letα be a root of first equation, then 1α be a root of second equation.
therefore aα2+bα+c=0 and a1α2+b1α+c=0 or cα2+bα+d=0
Hence α2babc=αccaa=1abbc
(ccaa)2=(bacb)(abbc).
Question 47. If the ratio of the roots of the equation ax2+bx+c=0 be p:q, then
  1.    pqb2+(p+q)2ac=0
  2.    pqb2−(p+q)2ac=0
  3.    pqa2−(p+q)2bc=0
  4.    pqb2−(p−q)2ac=0
 Discuss Question
Answer: Option B. -> pqb2−(p+q)2ac=0
:
B
Let pα,qα be the roots of the given equationax2+bx+c=0
Then pα +qα = baandpα.qα=ca
From first relation,α = ba(p+q)
Substituting this value ofα in second relation, we get
b2a2(p+q)2×pq=cab2pqac(p+q)2=0
Note : Students should remember this question as a fact.
Question 48. If α,βare the roots of the equation ax2+bx+c=0 then the equation whose roots are α+1β and β+1α, is
  1.    acx2+(a+c)bx+(a+c)2=0
  2.    abx2+(a+c)bx+(a+c)2=0
  3.    acx2+(a+b)cx+(a+c)2=0
  4.    None of these
 Discuss Question
Answer: Option A. -> acx2+(a+c)bx+(a+c)2=0
:
A
Hereα+β= baandαβ=ca
If roots are α+1β,β+1α, then sum of roots are
=(α+1β)+(β+1alpha)=(α+β)+α+βαβ=bac(a+c)
and product =(α+1β)(β+1α)
=αβ+1+1+1αβ=2+ca+ac
=2ac+c2+a2ac=(a+c)2ac
Hence required equation is given by
x2+bac(a+c)x+(a+c)2ac=0
acx2+(a+c)bx+(a+c)2=0
Trick : Let a = 1, b = -3, c = 2,then α = 1,β = 2
α+1β=32andβ+1α=3
required equation must be
(x3)(2x3)=0 i.e. 2x29x+9=0
Here (a) gives this equation on putting
a = 1, b = -3, c = 2
Question 49. If every pair of the equations x2+px+qr=0 , x2+qx+rp=0 , x2+rx+pq=0 have a common root, then the sum of three common roots is
  1.    −(p+q+r)2
  2.    −p+q+r2
  3.    -(p+q+r)
  4.    -p+q+r
 Discuss Question
Answer: Option A. -> −(p+q+r)2
:
A
Let the roots beα,β;β,γ andγ,α respectively.
∴α +β = -p,β +γ= -q,γ +α= -r
Adding all, we get∑α = (p+q+r)2 etc.
Question 50. The set of all real numbers x for which x2|x+2|+x>0, is
  1.     (-∞, -2)∪ (2, ∞)
  2.    (-∞, -√2)∪(√2, ∞)
  3.    (-∞, -1)∪(1, ∞)
  4.    (√2, ∞)
 Discuss Question
Answer: Option B. -> (-∞, -√2)∪(√2, ∞)
:
B
Case 1: When x + 2≥ 0 i.e/ x≥ -2,
Then given inequality becomes
x2(x+2)+x>0x22>0|x|>2
⇒therefore, in this case the part of the solution set is
[-2,-2) ∪ (2,∞).
Case 2: When x + 2 <0 i.e. x <-2,
Then given inequality becomes x2+(x+2)+x>0
x2+2x+2>0(x+1)2+1>0, which is true for all real x
Hence, the part of the solution set in this case is (-∞, -2). Combining the two cases, the solution set is(-∞, -2)∪[-2, -2)∪(2,)=(,2)∪(2, ∞)

Latest Videos

Latest Test Papers