Sail E0 Webinar

12th Grade > Mathematics

DETERMINANTS MCQs

Total Questions : 60 | Page 6 of 6 pages
Question 51. If A+B+C=π, then

sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tnaA0

is equal to 
  1.    1
  2.    0
  3.    -1
  4.    2
 Discuss Question
Answer: Option B. -> 0
:
B
Δ=
sinπsinBcosCsinB0tanAcos(πC)tnaA0
=
0sinBcosCsinB0tanAcosCtanA0

=0 (Δ is skew symmetric)
Question 52. Let f(x)=
cosxsinxcosxcox2xsin2x2cos2xcos3xsin3x3cos3x
, then f(π2) is equal to 
  1.    8
  2.    6
  3.    4
  4.    2
 Discuss Question
Answer: Option C. -> 4
:
C
f(x)=
sinxsinxcosx2sin2xsin2x2cos2x3sin3xsin3x3cos3x
+
cosxcosxcosxcos2x2cos2x2cos2xcos3x3cos3x3cos3x
+
cosxsinxsinxcos2xsin2x4sin2xcos3xsin3x9sin3x

f(π2)=
110002310
+0+
011100019
=2(13)+0+1(91)=4+8=4
Question 53.
1aba1cbc1
=
  1.    1+a2+b2+c2
  2.    1−a2+b2+c2
  3.    1+a2+b2−c2
  4.    1+a2−b2+c2
 Discuss Question
Answer: Option A. -> 1+a2+b2+c2
:
A

1aba1cbc1
=1(1+c2)a(a+bc)+b(ac+b)
=1+a2+b2+c2
.
Question 54. The number of values of k for which the system of equations (k+1)x + 8y = 4k, kx + (k+3)y = 3k1 has infinitely many solutions, is
  1.    0
  2.    1
  3.    2
  4.    Infinite
 Discuss Question
Answer: Option B. -> 1
:
B
For infinitely many solutions, the two equations must be identical
k+1k=8k+3=4k3k1(k+1)(k+3)=8k and 8(3k-1) = 4k(k+3)
k24k+3=0 and k23k+2=0.
By cross multiplication, k28+9=k32=13+4
k2=1 and k=1 ; k=1.
Question 55. If Dk=

1nn2kn2+n+1n2+n2k1n2n2+n+1

and nk=1Dk=56, then n equals
  1.    4
  2.    6
  3.    8
  4.    None of these
 Discuss Question
Answer: Option D. -> None of these
:
D
nk=1Dk=

nk=11nn2nk=1kn2+n+1n2+n2nk=1knk=11n2n2+n+1


=

nnnn2+nn2+n+1n2+nn2n2n2+n+1

=56

=Applying C2C2C1C3C3C1, then

n00n2+n10n0n+1
=56
n(n+1)=56=7×8n=7
Question 56. If Δ1=
111abca2b2c2
,Δ2=
1bca1cab1abc
, then 
  1.    Δ1+Δ2=0
  2.    Δ1+2Δ2=0
  3.    Δ1=Δ2
  4.    Δ1=2Δ2
 Discuss Question
Answer: Option A. -> Δ1+Δ2=0
:
A
Δ1=
111abca2b2c2
,
& Δ2=
1bca1cab1abc

In Δ2,Transposing the determinant
Δ2=
111bccaabaac

C1aC1,C2bC2,C3CC3
Δ2=1abc
abcabcabcabca2b2c2

Taking abc common from R2
Δ2=
abc111a2b2c2

R1R2
Δ2=
111abca2b2c2

Δ2=Δ1Δ2+Δ1=0
Question 57. The cofactor of the element '4' in the determinant


1351234280110211


is
  1.    4
  2.    -10
  3.    10
  4.    -4
 Discuss Question
Answer: Option C. -> 10
:
C
The cofactor of element 4, in the 2nd row and 3rd column is
=(1)2+3
131801021
= - {1(-2)-3(8-0)+1.16}
=10.
Question 58. If a,b,c are  non – zero real numbers and if the equations (a-1) x = y + z, (b -1)y = z + x, (c - 1)z = x + y has a non trivial solution, then ab + bc + ca is equal to
  1.    a +b + c
  2.    abc
  3.    1
  4.    None of these
 Discuss Question
Answer: Option B. -> abc
:
B
For non trivial solution

a11111b1111c
=0

Applying C1C1C3 and C2C2C3, then

a010b1cc1c
=0
a(b+bcc)0+c(0b)=0ab+bc+ca=abc

Question 59. If f(n)=αn+βn and

31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)

=k(1α)2(1β)2(αβ)2
, then k is equal to
  1.    1
  2.    -1
  3.    αβ
  4.    αβγ
 Discuss Question
Answer: Option A. -> 1
:
A
Δ=

31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4

=
1111αβ1α2β2
×
1111αβ1α2β2

Applying C2C2C3C3C1,

1001α1β11α21β21
2
=(α1)2(β1)2(βα)2=(1α)2(1β)2(αβ)2

Hence, k=1
Question 60. If α,β are non real numbers satisfying x31=0 then the value of
λ+1αβαλ+β1β1λ+α
is equal to 
  1.    0
  2.    λ3
  3.    λ3+1
  4.    λ3−1
 Discuss Question
Answer: Option B. -> λ3
:
B
x31=0x=1,ω,ω2
Here, α=ω,β=ω2

λ+1ωω2ωλ+ω21ω21λ+ω


Applying C1C1+C2+C3, then


λωω2λλ+ω21λ1λ+ω


Applying R2R2R1 and R3R3R1, then we get


λωω20λ+ω2ω1ω201ωλ+ωω2

=λ((λ+ω2ω)(λ+ωω2)(1ω)(1ω2))=λ(λ2)=λ3

Latest Videos

Latest Test Papers