Sail E0 Webinar

12th Grade > Mathematics

CONTINUITY AND DIFFERENTIABILITY MCQs

Total Questions : 30 | Page 3 of 3 pages
Question 21. If y=x+y+x+y+....,then dydx is equal to
  1.    12y−1
  2.    y2−x2y3−2xy−1
  3.    (2y−1)
  4.    None of these
 Discuss Question
Answer: Option B. -> y2−x2y3−2xy−1
:
B
y=x+y+y
(y2x)=2y
or(y2x)2=2y
Differentiating both sides w.r.t. x, then
2(y2x)(2ydydx1)=2dydx
dydx=(y2x)2y32xy1
Question 22. If (x+y)+(yx)=a,then d2ydx2 equals
  1.    2a
  2.    −2a2
  3.    2a2
  4.    None of these
 Discuss Question
Answer: Option C. -> 2a2
:
C
Given,
(x+y)+(yx)=a..........(i)
x+yyx=2xa.......(ii)
AddingEqs.(i)and(ii),then
2x+y=a+2xa
Squaring,4x+4y=a2+4x2a2+4x
4+4dydx=0+8xa2+4
0+4d2ydx2=8a2
d2ydx2=2a2
Question 23. The derivative of sin1(2x1+x2) with respect to tan1(2x1x2) is
  1.    0
  2.    1
  3.    11−x2
  4.    11+x2
 Discuss Question
Answer: Option B. -> 1
:
B
Letu=sin1(2x1+x2)=2tan1x
dudx=21+x2
andv=tan1(2x1+x2)=2tan1x
dvdx=21+x2
dudv=(dudx)(dvdx)=1
Question 24. If sin (x+y)=loge(x+y),thendydx is equal to
  1.    2
  2.    - 2
  3.    1
  4.    - 1
 Discuss Question
Answer: Option D. -> - 1
:
D
sin(x+y)=loge(x+y),
cos(x+y)(1+dydx)=1(x+y)(1+dydx)
(1+dydx)(cos(x+y)1x+y)=0
cos(x+y)1(x+y)0
1+dydx=0
dydx=1
Question 25. If xcos y+ycos x=5. Then
  1.    at x = 0, y = 0, y’ = 0
  2.    at x = 0, y = 1, y’ = 0
  3.    at x = y = 1, y’ = – 1
  4.    at x = 1, y = 0, y’ = 1
 Discuss Question
Answer: Option C. -> at x = y = 1, y’ = – 1
:
C
xcosy+ycosx=5
ecosylogex+ecosxlogey=5
ecosylogex{cosyxlogex(siny)dydx}+ecosxlogey{cosxydydxsinxlogey}=0
Putx=y=1,(cos10)+(cos1dydx0)=0
dydx=1
ory=1
Question 26. If sin y = x sin (a + y) and dydx=A1+x22xcos a, then the value of A is
  1.    2
  2.    cos a
  3.    sin a
  4.    None of these
 Discuss Question
Answer: Option C. -> sin a
:
C
x=sinysin(a+y).....(i)
dxdy=sin(a)sin2(a+y)
dydx=sin2(a+y)sin(a)=A1+x22xcosa
Putx=0,y=0,
thenA=sina
Question 27. If (1x6)+(1y6)=a(x3y3) and dydx=f(x,y)(1y61x6),then
  1.    f(x,y)=yx
  2.    f(x,y)=y2x2
  3.    f(x,y)=2y2x2
  4.    f(x,y)=x2y2
 Discuss Question
Answer: Option D. -> f(x,y)=x2y2
:
D
Putx3=sinθ,y3=sinϕ,
thencosθ+cosϕ=a(sinθsinϕ)
2cos(θ+ϕ2)cos(θϕ2) =2acos(θ+ϕ2)sin(θϕ2)
cot(θϕ2) = a
(θϕ2)=cot1a
sin1x3sin1y3=2cot1a
3x2(1x6)3y2(1y6)dydx=0
dydx=x2y2(1y61x6)
f(x,y)=x2y2
Question 28. If x = a cos θ,y=b sin θ,then d3ydx3 is equal to
  1.    (−3ba3)cosec4θ cot4θ
  2.    (3ba3)cosec4θ cotθ
  3.    (−3ba3)cosec4θ cotθ
  4.    None of the above
 Discuss Question
Answer: Option C. -> (−3ba3)cosec4θ cotθ
:
C
x=acosθdxdθ=asinθandy=bsinθdydθ=bcosθdydx=bacotθd2ydx2=bacosec2θdθdx=ba2cosec3θd3ydx3=3ba2cosec2θ(cosecθcotθ)dθdx=3ba2cosec3θcotθ(1asinθ)=3ba3cosec4θcotθ
Question 29. Let f(x)=loge{u(x)v(x)},u(2)=4,v(2)=2,u(2)=2,v(2)=1,then f(2) is equal to
  1.    0
  2.    1
  3.    - 1 
  4.    None of these
 Discuss Question
Answer: Option A. -> 0
:
A
f(x)=loge{u(x)v(x)}
=logeu(x)logev(x)
f(x)=u(x)u(x)v(x)v(x)
f(2)=u(2)u(2)v(2)v(2)
=4221
=22=0
Question 30. The derivative of cos1(x1xx1+x) at x=1 is
  1.    - 2
  2.    - 1
  3.    0
  4.    1
 Discuss Question
Answer: Option D. -> 1
:
D
We have, y=cos1(x1xx1+x)y=cos1(1x21+x2)
Now, Put x=tanθ
We get y=cos1(1tan2θ1+tan2θ)y=cos1(cos2θ)y=2θy=2tan1xdydx=21+x2dydx|x=1=21+(1)2=2

Latest Videos

Latest Test Papers