Sail E0 Webinar

12th Grade > Mathematics

CONTINUITY AND DIFFERENTIABILITY MCQs

Total Questions : 30 | Page 2 of 3 pages
Question 11. If x=secθcosθ,y=sec10θcos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
  1.    1100
  2.    1
  3.    10
  4.    100
 Discuss Question
Answer: Option D. -> 100
:
D
x2+4=(secθcosθ)2+4=(secθ+cosθ)2(i)Similarly,y2+4=(sec10θ+cos10θ)2(ii)Now,dxdθ=secθtanθ+sinθ=tanθ(secθ+cosθ)anddydθ=10sec9θsecθtanθ10cos9θ(sinθ)=10tanθ(sec10θcos10θ)dydx=(dydθ)(dxdθ)=10tanθ(sec10θ+cos10θ)tanθ(secθ+cosθ)(dydx)2=100(sec10θ+cos10θ)(secθ+cosθ)2=100(y2+4)(x2+4)or(x2+4)(dydx)2=100(y2+4)
On comparing with the expression given we get k = 100
Question 12. If (1x2n)+(1y2n)=a(xnyn), then (1x2n1y2n)dydx is equal to
  1.    xn−1yn−1
  2.    yn−1xn−1
  3.    xy
  4.    1
 Discuss Question
Answer: Option A. -> xn−1yn−1
:
A
Putxn=sinθandyn=sinϕthen,(cosθ+cosϕ)=a(sinθsinϕ)2cos(θ+ϕ2)cos(θϕ2)=2acos(θ+ϕ2)sin(θϕ2)cot(θϕ2)=a(θϕ2)=cot1aθϕ=2cot1aorsin1xnsin1yn=2cot1aDifferentiatingbothsides,wehavenxn1(1x2n)nyn1(1y2n)dydx=0(1x2n1y2n)dydx=xn1yn1
Question 13. If (x2+y2)=a.etan1(y/x) a>0,then y"(0) is equal to
  1.    2ae−π/2
  2.    aeπ/2
  3.    −2ae−π/2
  4.    Does not exist
 Discuss Question
Answer: Option C. -> −2ae−π/2
:
C
(x2+y2)=a.etan1(y/x)
12x2+y2(2x+2yy)=a.etan1(y/x)×11+y2x2×xyyx2.....(i)
x+yyx2+y2=(x2+y2)×xyyx2+y2
[fromEq.(i)]
x+yy=xyyy=x+yxy
y"=2(xyy)(xy)2
y"(0)=2(0y(0)){0y(0)}2=2aeπ/2=2aeπ/2
Question 14. If y=sin x+sin x+sin x+.....,then dydx is equal to
  1.    2y−1cos x
  2.    cos x2y−1
  3.    2x−1cos x
  4.    cos x2x−1
 Discuss Question
Answer: Option B. -> cos x2y−1
:
B
y=sinx+yy2y=sinx
(2y1)dydx=cosx
Question 15. If y = tan1(1+sinx1sinx),π2<x<π, then dydx equals
  1.    −12
  2.    −1
  3.    12
  4.    1
 Discuss Question
Answer: Option A. -> −12
:
A
y=tan1
(1cos(π2+x)1+cos(π2+x))
=tan1tan(π4+x2))(i)

Now,π2<x<π
π4<x2<π2
orπ2<π4+x2<3π4
tan(π4+x2)=tan(π4+x2)(insecondquadrant)
=tan{π(π4+x2)}
FromEq.(i),
y=tan1tan{π(π4+x2)}
=π(π4+x2)
=3π4x2
(principalvalueoftan1xinπ2toπ2)
dydx=12
Question 16. If y=(1+cos 2 θ1cos2 θ),dydθ at θ=3π4 is
  1.    −2
  2.    2
  3.    ±2
  4.    None of these
 Discuss Question
Answer: Option B. -> 2
:
B
y=(1+cos2θ1cos2θ)
=|cotθ|=cotθ(θ=3π4)
dydθ=cosec2θ
dydθ|θ=3π/4=(2)2=2
Question 17. If d2xdy2(dydx)3+d2ydx2=k, then k is equal to
  1.    0
  2.    1
  3.    2
  4.    None of these
 Discuss Question
Answer: Option A. -> 0
:
A
dydx=(dxdy)1d2ydx2=(dxdy)2{ddx(dxdy)}d2ydx2=(dxdy)2{ddy(dxdy)dydx}d2ydx2=(dydx)2{d2xdy2.dydx}d2ydx2=(dydx)3d2xdy2d2ydx2+(dydx)3d2xdy2=0
Question 18. If x2+y2=t1t and x4+y4=t2+1t2,then x3ydydx equals
  1.    - 1
  2.    0 
  3.    1
  4.    None of these
 Discuss Question
Answer: Option C. -> 1
:
C
x2+y2=t1t
On squaring both the sides
=x4+y4+2x2y2 = t2+1t22
Given that -
x4+y4=t2+1t2
x2y2=1
x2.2ydydx+y2.2x=0
x3ydydx=x2y2=1
Question 19. If f(x) = |x|, then f’(x), where x 0 is equal to
  1.    −1
  2.    0
  3.    1
  4.    |x|x
 Discuss Question
Answer: Option D. -> |x|x
:
D
f(x)={x,x0x,x<0f(x)=1,x>0,i.e,|x|x,x>01,x>0,i.e,|x|x,x>0=|x|x,x0
Question 20. If y=(1+x)(1+x2)(1+x4)(1+x2n) then dydx at x = 0 is
  1.    0
  2.    -1
  3.    1
  4.    None of these
 Discuss Question
Answer: Option C. -> 1
:
C
Since,y=(1+x)(1+x2)(1+x4)(1+x2n),(1x)y=(1x2)(1+x2)(1+x4)(1+x2n)=(1x4)(1+x4)(1+x2n+1)y=1x2n+1(1x)dydx=(1x)(2n+1.x2n)(1x2n+1)(1)(1x)2dydxx=0=(1)(0)(1)(1)(1)2=1

Latest Videos

Latest Test Papers