Sail E0 Webinar

12th Grade > Mathematics

CONTINUITY AND DIFFERENTIABILITY MCQs

Total Questions : 30 | Page 1 of 3 pages
Question 1. If f(x)=(logcotxtan x)(logtanxcot x)1+tan1(x(4x2)) then f'(0) is equal to
  1.    −2
  2.    2
  3.    12
  4.    0
 Discuss Question
Answer: Option C. -> 12
:
C
f(x)=(logcotxtanx)(logtanxcotx)+tan1(x(4x2))
f(x)=1+tan1(x(4x2))
Now Put x=2sinθ, we get
f(x)=1+tan1(2sinθ44sin2θ)f(x)=1+tan1(2sinθ2cosθ)f(x)=1+tan1(tanθ)f(x)=1+θf(x)=1+sin1(x2)f(x)=0+11(x2)212f(0)=12
Question 2. If 2x+2y=2x+y then the value of dydx at x=y=1 is
  1.    0
  2.    - 1 
  3.    1
  4.    2
 Discuss Question
Answer: Option B. -> - 1 
:
B
2x+2y=2x+y
2x.loge2+2y.loge2dydx=2x+y.loge2(1+dydx)
dydx=2x+y2x2y2x+y
dydx|x=y=1=1
Question 3. If f(x) = x + tan x and f is inverse of g, then g’(x) is equal to
  1.    11+(g(x)−x)2
  2.    11−(g(x)−x)2
  3.    12+(g(x)−x)2
  4.    12−(g(x)−x)2
 Discuss Question
Answer: Option C. -> 12+(g(x)−x)2
:
C
Lety=f(x)x=f1(y)
thenf(x)=x+tanx
x=f1(y)+tan(f1(y))
x=g(y)+tan(g(y))orx=g(x)+tan(g(x))(i)
Differentiating both sides, then we get
1=g(x)+sec2g(x).g(x)
g(x)=11+sec2(g(x))=11+1+tan2(g(x))
=12+(xg(x))2[fromEq.(i)]
12+(g(x)x)2
Question 4. If y=(ax+bcx+d) , then 2dydx.d3ydx3 is equal to
  1.    (d2ydx2)2
  2.    3d2ydx2
  3.    3(d2ydx2)2
  4.    3d2xdy2
 Discuss Question
Answer: Option C. -> 3(d2ydx2)2
:
C
y=(ax+bcx+d)orcxy+dy=ax+b
Differentiating both sides w.r.t.x, then
c{xdydx+y.1}+ddydx=aorxdydx+y+(dc)dydx=(ac)
Again differentiating both sides w.r.t.x, then
orxd2ydx2+dydx+dydx+(dc)d2ydx2=0orx+2dydx(d2ydx2)+dc=0
Again differentiating both sides w.r.t.x, then
1+2(d2ydx2.d2ydx2dydx.d3ydx3)(d2ydx2)2+0=02dydx.d3ydx3=3(d2ydx2)2
Question 5. If f(x) = sin1(sin x)+cos1(sin x) and ϕ(x)=f(f(f(x))),then ϕ(x) is equal to
  1.    1
  2.    sin x
  3.    0
  4.    None of these
 Discuss Question
Answer: Option C. -> 0
:
C
f(x)=π2(aconstantfunction)
ϕ(x)=0
Question 6. If xy=exy then dydx=
  1.    (1+In x)−1
  2.    (1+In x)−2
  3.    In x(1+In x)−2
  4.    None of these
 Discuss Question
Answer: Option C. -> In x(1+In x)−2
:
C
Since,xy=exyylnx=xyy=x1+Inxdydx=lnx(1+Inx)2
Question 7. If x=ey+ey+ey+ey+
  1.    1x
  2.    1−xx
  3.    x1+x
  4.    None of these
 Discuss Question
Answer: Option B. -> 1−xx
:
B
x=ey+xlogex=y+x
1x=dydx+1
dydx=1xx
Question 8. If xy.yx=16,then dydx at (2,2) is
  1.    - 1
  2.    0
  3.    1
  4.    None of these
 Discuss Question
Answer: Option A. -> - 1
:
A
xy.yx=16
logexy+logeyx=loge16
ylogex+xlogey=4loge2
Now, differentiating both sides w.r.t.x
yx+logexdydx+xydydx+logey.1=0
dydx=(logey+yx)(logex+xy)
dydx|(2,2)=(loge2+1)(loge2+1)=1
Question 9. If y=ln(xa+bx)x,then x3d2ydx2 is equal to
  1.    (dydx+x)2
  2.    (dydx−y)2
  3.    (xdydx+y)2
  4.    (xdydx−y)2
 Discuss Question
Answer: Option D. -> (xdydx−y)2
:
D
y=ln(xa+bx)x=x(lnxln(a+bx))
or(yx)=lnxln(a+bx)
Differentiating both sides w.r.t.x,then
xdydxy.1x2=1xba+bx=ax(a+bx)(i)
or(xdydxy)=(axa+bx)
Again taking logarithm on both sides, then
ln(xdydxy)=ln(ax)ln(a+bx)
Differetiating both sides w.r.t.x, then
xd2ydx2+dydxdydx(xdydxy)=1xba+bx=ax(a+bx)=(xdydxy)x2[FromEq.(i)]orx3d2ydx2=(xdydxy)2
Question 10. If 5f(x) + 3f (1x) = x + 2 and y = x f(x), then (dydx)x=1 is equal to
  1.    14
  2.    78
  3.    1
  4.    None of these
 Discuss Question
Answer: Option B. -> 78
:
B
5f(x)+3f(1x)=x+2........(i)
Replacingxby1x
5f(1x)+3f(x)=1x+2...(ii)
FromEq.(i).
25f(x)+15f(1x)=5x+10....(iii)
andfromEq.(ii)
9f(x)+15f(1x)=3x+6.....(iv)
SubtractingEq.(iv)from(iii),weget
16f(x)=5x3x+4
xf(x)=5x23+4x16=y
dydx=10x+416
dydx|x=1=10+416
=78

Latest Videos

Latest Test Papers