Sail E0 Webinar

Quantitative Aptitude

PROGRESSIONS MCQs

Total Questions : 42 | Page 3 of 5 pages
Question 21. The sum of third and ninth term of an A.P is 8. Find the sum of the first 11 terms of the progression.
  1.    44
  2.    22
  3.    19
  4.    46
 Discuss Question
Answer: Option A. -> 44
Question 22. If Sn denotes the sum of the first r terms of an A.P. Then, S3n : (S2n – Sn) is
  1.    n
  2.    3n
  3.    3
  4.    None of these
 Discuss Question
Answer: Option C. -> 3
$$\eqalign{
& {S_n} = \frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right], \cr
& {S_{2n}} = \frac{{2n}}{2}\left[ {2a + \left( {2n - 1} \right)d} \right]\,{\text{and}} \cr
& {S_{3n}} = \frac{{3n}}{2}\left[ {2a + \left( {3n - 1} \right)d} \right] \cr
& {\text{Now}}\,{S_{2n}} - {S_n} \cr} $$
$$ = \frac{{2n}}{2}\left[ {2a + \left( {2n - 1} \right)d} \right] - $$     $$\frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$$
$$ = \frac{n}{2}\left[ {4a + \left( {4n - 2} \right)d} \right] - $$     $$\left[ {2a + \left( {n - 1} \right)d} \right]$$
$$\eqalign{
& = \frac{n}{2}\left[ {4a - 2a + \left( {4n - 2 - n + 1} \right)d} \right] \cr
& = \frac{n}{2}\left[ {2a + \left( {3n - 1} \right)d} \right] \cr
& = \frac{1}{3}\left( {{S_{3n}}} \right) \cr
& \therefore {S_{3n}}:\left( {{S_{2n}} - {S_n}} \right) \cr
& = 3:1\,{\text{or}}\,\frac{3}{1} = 3 \cr} $$
Question 23. The common difference of the A.P. is $$\frac{1}{{2q}},$$ $$\frac{{1 - 2q}}{{2q}},$$  $$\frac{{1 - 4q}}{{2q}},$$  . . . . is
  1.    -1
  2.    1
  3.    q
  4.    2q
 Discuss Question
Answer: Option A. -> -1
$$\eqalign{
& {\text{A}}{\text{.P}}{\text{.}}\,{\text{is}}\,\frac{1}{{2q}},\,\frac{{1 - 2q}}{{2q}},\,\frac{{1 - 4q}}{{2q}},.... \cr
& \Rightarrow \frac{1}{{2q}},\,\left( {\frac{1}{{2q}} - 1} \right),\,\left( {\frac{1}{{2q}} - 2} \right),\,.... \cr
& {\text{Clearly}}\,d = \left( {\frac{1}{{2q}} - 1} \right) - \frac{1}{{2q}} \cr
& = \frac{1}{{2q}} - 1 - \frac{1}{{2q}} \cr
& = - 1 \cr} $$
Question 24. If $$\frac{1}{{x + 2}},$$  $$\frac{1}{{x + 3}},$$  $$\frac{1}{{x + 5}}$$   are in A.P. then x = ?
  1.    5
  2.    3
  3.    1
  4.    2
 Discuss Question
Answer: Option C. -> 1
$$\eqalign{
& \frac{1}{{x + 2}},\,\frac{1}{{x + 3}},\,\frac{1}{{x + 5}}\,{\text{are}}\,{\text{in}}\,{\text{A}}{\text{.P}}{\text{.}} \cr
& \therefore \frac{1}{{x + 3}} - \frac{1}{{x + 2}} = \,\frac{1}{{x + 5}} - \frac{1}{{x + 3}} \cr
& \Rightarrow \frac{{x + 2 - x - 3}}{{\left( {x + 3} \right)\left( {x + 2} \right)}} = \frac{{x + 3 - x - 5}}{{\left( {x + 5} \right)\left( {x + 3} \right)}} \cr
& \Rightarrow \frac{{ - 1}}{{\left( {x + 3} \right)\left( {x + 2} \right)}} = \frac{{ - 2}}{{\left( {x + 5} \right)\left( {x + 3} \right)}} \cr
& \Rightarrow \frac{{ - 1}}{{x + 2}} = \frac{{ - 2}}{{x + 5}} \cr
& \Rightarrow - 2x - 4 = - x - 5 \cr
& \Rightarrow - 2x + x = - 5 + 4 \cr
& \Rightarrow - x = - 1 \cr
& \therefore x = 1 \cr} $$
Question 25. If the first term of an A.P. is a and nth term is b, then its common difference is
  1.    $$\frac{{b - a}}{{n + 1}}$$
  2.    $$\frac{{b - a}}{{n - 1}}$$
  3.    $$\frac{{b - a}}{n}$$
  4.    $$\frac{{b + a}}{{n - 1}}$$
 Discuss Question
Answer: Option B. -> $$\frac{{b - a}}{{n - 1}}$$
In the given A.P.
First term = a and nth term = b
$$\eqalign{
& \therefore a + \left( {n - 1} \right)d = b \cr
& \Rightarrow \left( {n - 1} \right)d = b - a \cr
& \Rightarrow d = \frac{{b - a}}{{n - 1}} \cr} $$
Question 26. If $$\frac{{5 + 9 + 13 + ...\,{\text{to}}\,n\,{\text{terms}}}}{{7 + 9 + 11 + ...\,{\text{to}}\,\left( {n + 1} \right)\,{\text{terms}}}}$$       $$ = \frac{{17}}{{16}},$$  then n = ?
  1.    8
  2.    7
  3.    10
  4.    11
 Discuss Question
Answer: Option B. -> 7
Sum of 5 + 9 + 13 + . . . . to n terms
$$\eqalign{
& = \frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] \cr
& {\text{Here}}\,a = 5,\,d = 9 - 5 = 4 \cr
& \therefore {\text{Sum}} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 4} \right] \cr
& = \frac{n}{2}\left[ {10 + 4n - 4} \right] \cr
& = \frac{n}{2}\left[ {6 + 4n} \right] \cr
& = n\left( {3 + 2n} \right) \cr} $$
and sum of 7 + 9 + 11 + . . . . to (n + 1) terms
$$\eqalign{
& = \frac{{n + 1}}{2}\left[ {2 \times 7 + \left( {n + 1 - 1} \right)2} \right] \cr
& = \frac{{n + 1}}{2}\left[ {14 + 2n} \right] \cr
& = \left( {n + 1} \right)\left( {7 + n} \right) \cr
& \therefore \frac{{5 + 9 + 13 + ...\,{\text{to}}\,n\,{\text{terms}}}}{{7 + 9 + 11 + ...\,{\text{to}}\,\left( {n + 1} \right)\,{\text{terms}}}} = \frac{{17}}{{16}} \cr
& \Rightarrow \frac{{n\left( {3 + 2n} \right)}}{{\left( {n + 1} \right)\left( {7 + n} \right)}} = \frac{{17}}{{16}} \cr
& \Rightarrow 16n\left( {3 + 2n} \right) = 17\left( {n + 1} \right)\left( {7 + n} \right) \cr
& \Rightarrow 48n + 32{n^2} = 17\left( {{n^2} + 8n + 7} \right) \cr
& \Rightarrow 48n + 32{n^2} = 17{n^2} + 136n + 119 \cr
& \Rightarrow 48n + 32{n^2} - 17{n^2} - 136n - 119 = 0 \cr
& \Rightarrow 15{n^2} - 88n - 119 = 0 \cr
& \Rightarrow 15{n^2} - 105n + 17n - 119 = 0 \cr} $$
\[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}
∵ 15 \times \left( { - 119} \right) = 1785\\
- 1785 = 17 \times \left( {105} \right)\\
- 88 = 17 - 105
\end{array} \right\}\]
$$\eqalign{
& \Rightarrow 15n\left( {n - 7} \right) + 17\left( {n - 7} \right) = 0 \cr
& \Rightarrow \left( {n - 7} \right)\left( {15n + 17} \right) = 0 \cr} $$
Either $$n - 7 = 0,$$   then $$n = 7$$
or $$15n + 13 = 0,$$    then $$n = \frac{{ - 13}}{{15}}$$   which is not possible being fraction
∴ n = 7
Question 27. The 9th term of an A.P. is 449 and 449th term is 9. The term which is equal to zero is
  1.    50th
  2.    502th
  3.    508th
  4.    None of these
 Discuss Question
Answer: Option D. -> None of these
$$\eqalign{
& {a_n} = a + \left( {n - 1} \right)d \cr
& {a_9} = 449 \cr
& \,\,\,\,\,\, = a + \left( {9 - 1} \right)d \cr
& \,\,\,\,\,\, = a + 8d\,.....\left( 1 \right) \cr
& {a_{449}} = 9 \cr
& \,\,\,\,\,\,\,\,\, = a + \left( {449 - 1} \right)d \cr
& \,\,\,\,\,\,\,\,\, = a + 448d\,.....\left( 2 \right) \cr
& {\text{Subtracting}} \cr
& 440d = - 440 \cr
& \Rightarrow d = \frac{{ - 440}}{{440}} = - 1 \cr
& {\text{and}}\,a + 8d = 449 \cr
& \Rightarrow a \times 8 \times \left( { - 1} \right) = 449 \cr
& \Rightarrow a = 449 + 8 = 457 \cr
& \therefore 0 = a + \left( {n - 1} \right)d \cr
& \Rightarrow 0 = 457 + \left( {n - 1} \right)\left( { - 1} \right) \cr
& \Rightarrow 0 = 457 - n + 1 \cr
& \Rightarrow n = 458 \cr
& \therefore {458^{{\text{th}}}}\,{\text{term}} = 0 \cr} $$
Question 28. If Sn denote the sum of n terms of an A.P. with first term a and common difference d such that $$\frac{{{S_x}}}{{{S_{kx}}}}$$ is independent of x, then
  1.    d = a
  2.    d = 2a
  3.    a = 2d
  4.    d = -a
 Discuss Question
Answer: Option B. -> d = 2a
Sn is the sum of first n terms a is the first term and d is the common difference
$$\eqalign{
& {S_n} = \frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] \cr
& \frac{{{S_x}}}{{{S_{kx}}}} = \frac{{\frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\frac{{kx}}{2}\left[ {2a + \left( {kx - 1} \right)d} \right]}} \cr
& \because \frac{{{S_x}}}{{{S_{kx}}}}\,{\text{is}}\,{\text{independent of}}\,x \cr} $$
$$\therefore \frac{{\frac{n}{2}\left[ {2a + \left( {x - 1} \right)d} \right]}}{{\frac{{kx}}{2}\left[ {2a + \left( {kx - 1} \right)d} \right]}}\,$$    is independent of x
$$\therefore \frac{{\frac{n}{2}\left[ {2a + xd - d} \right]}}{{\frac{{kx}}{2}\left[ {2a + kdx - d} \right]}}$$    is independent of x
$$ \Rightarrow \frac{{2a - d}}{{k\left( {2a - d} \right)}}$$   is in dependent of x if 2a - d $$ \ne $$ 0
If 2a - d =0, then d = 2a
Question 29. The sum of n terms of two A.P.’s are in the ratio 5n + 4 : 9n + 6. Then, the ratio of their 18th term is
  1.    $$\frac{{179}}{{321}}$$
  2.    $$\frac{{178}}{{321}}$$
  3.    $$\frac{{175}}{{321}}$$
  4.    $$\frac{{176}}{{321}}$$
 Discuss Question
Answer: Option A. -> $$\frac{{179}}{{321}}$$
Let a1, d2 be the first terms of two ratios S and S' and d1, d2 be their common difference respectively
Then,
$$\eqalign{
& {S_n} = \frac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right){d_1}} \right]\,{\text{and}} \cr
& S{'_n} = \frac{n}{2}\left[ {2{a_2} + \left( {n - 1} \right){d_2}} \right] \cr
& {\text{Now,}} \cr
& \,\frac{{{S_n}}}{{S{'_n}}} = \frac{{\frac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right){d_1}} \right]}}{{\frac{n}{2}\left[ {2{a_2} + \left( {n - 1} \right){d_2}} \right]}} \cr
& = \frac{{2{a_1} + \left( {n - 1} \right){d_1}}}{{2{a_2} + \left( {n - 1} \right){d_2}}} \cr
& {\text{But}}\,\frac{{{S_n}}}{{S{'_n}}} = \frac{{5n + 4}}{{9n + 6}} \cr
& \therefore \frac{{2{a_1} + \left( {n - 1} \right){d_1}}}{{2{a_2} + \left( {n - 1} \right){d_2}}} = \frac{{5n + 4}}{{9n + 6}} \cr} $$
Now we have to find the ratios in 18th term
Here n = 18
$$\eqalign{
& \therefore \frac{{2{a_1} + \left( {18 - 1} \right){d_1}}}{{2{a_2} + \left( {18 - 1} \right){d_2}}} = \frac{{5\left( {2n - 1} \right) + 4}}{{9\left( {2n - 1} \right) + 6}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{5\left( {2 \times 18 - 1} \right) + 4}}{{9\left( {2 \times 18 - 1} \right) + 6}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{5 \times 35 + 4}}{{9 \times 35 + 6}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{175 + 4}}{{315 + 6}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{179}}{{321}} \cr} $$
Question 30. The sum of first 20 odd natural numbers is
  1.    100
  2.    210
  3.    400
  4.    420
 Discuss Question
Answer: Option C. -> 400
First 20 odd natural numbers are 1, 3, 5, 7, 9, 11, 13, 15, . . . . ., 39
Here a = 1, d = 2, n = 20
$$\eqalign{
& \therefore {S_{20}} = \frac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] \cr
& = \frac{{20}}{2}\left[ {2 \times 1 + \left( {20 - 1} \right) \times 2} \right] \cr
& = 10\left( {2 + 38} \right) \cr
& = 10 \times 40 \cr
& = 400 \cr} $$

Latest Videos

Latest Test Papers