Sail E0 Webinar

12th Grade > Mathematics

INVERSE TRIGONOMETRIC FUNCTIONS MCQs

Total Questions : 60 | Page 4 of 6 pages
Question 31. cos1x=tan11x2x, then:
 
  1.    X∈R
  2.    −≤x≤1,x≠0
  3.    0
  4.    None of these
 Discuss Question
Answer: Option C. -> 0
:
C
Putting θ=cos1x in R.H.S., we have
R.H.S =tan11x2x=tan11cos2θcosθ(0θπ)=tan1sinθcosθ=tan1tanθ=θ=cos1x when π2<θ<π2
i.e., when 0θ<π2
i.e., when 0<cosθ1 i.e., 0<x1.
Question 32. If θ=tan1d1+a1a2+tan1d1+a2a3++tan1d1+an1an, where a1,a2,a3,an  are in A.P. with common difference d, then tanθ=
  1.    (n−1)d1+a1an
  2.    (n−1)da1+an
  3.    an−a1an+a1
  4.    nd1+a1an
 Discuss Question
Answer: Option A. -> (n−1)d1+a1an
:
A
θ=tan1a2a11+a1a2+tan1a3a21+a2a3++tan1anan11+an1an
=(tan1a2tan1a1)+(tan1a3tan1a2)++tan1anan11+an1an++(tan1antan1an1)
=tan1antan1a1
=tan1ana11+a1an=tan1(n1)d1+a1an
tanθ=(n1)d1+a1an
Question 33. If cos1p+cos11p+cos11q=3π4, then the value of q is
  1.    1
  2.    1√2
  3.    13
  4.    12
 Discuss Question
Answer: Option D. -> 12
:
D
Let α=cos1p:β=cos11p
and γ=cos11q
or
cosα=p:cosβ=1p
and cosγ=1q.
Therefore sinα=1p,sinβ=p and sinγ=q.
The given equation may be written as α+β+γ=3π4
or,α+β=3π4γ
or, cos(α+β)=cos(3π4γ)
cosαcosβsinαsinβ = cos{π(π4+γ)}=cos(π4+γ)
p1p1pp=(121q12.q)
0=1qq1q=qq=12
Question 34. cos[cos1(17)+sin1(17)]=
  1.    −13
  2.    0
  3.    13
  4.    49
 Discuss Question
Answer: Option B. -> 0
:
B
cos{cos1(17)+sin1(17)}=cosπ2=0
Question 35. sin1(sin10)=
  1.    10
  2.    3π−10
  3.    π+6
  4.    2π−6
 Discuss Question
Answer: Option B. -> 3π−10
:
B
3π<10<3π+π210radQ3π2<3π10<03π10Q4Alsosin(3π10)=sin10Hencesin1(sin10)=sin1sin(3π10)=3π10
Question 36. If 3sin12x1+x24cos11x21+x2+2tan12x1+x2=π3 then x=
  1.    √3
  2.    1√3
  3.    1
  4.    None of these
 Discuss Question
Answer: Option B. -> 1√3
:
B
3sin12x1+x24cos11x21+x2+2tan12x1+x2=π3
Putting x=tanθ
3sin1(2tanθ1+tan2θ)4cos1(1tan2θ1+tan2θ)
+2tan1(2tanθ1tan2θ)=π3
3sin1(sin2θ)4cos1(cos2θ)
+2tan1(tan2θ)=π3
3(2θ)4(2θ)+2(2θ)=π36θ8θ+4θ=π3
θ=π6tan1x=π6x=tanπ6=13
Question 37. sin1|cosx|cos1|sinx|=a has at least one solution if a
  1.    0
  2.    [0,π2]
  3.    [π2,3π2]
  4.    (0,π)
 Discuss Question
Answer: Option A. -> 0
:
A
sin1|cosx|cos1|sinx|=π2cos1|cosx|π2+sin1|sinx|=asin1|sinx|cos1|cosx|=aa=0x
Question 38. The value of x for which sin(cot1(1+x))=cos(tan1x) is:
 
  1.    12
  2.    1
  3.    0
  4.    −12   
 Discuss Question
Answer: Option D. -> −12   
:
D
sin(cot1(1+x))=cos(tan1x)cot1(1+x)=[π2±tan1x]π2tan1(1+x)=π2±tan1x1+x=±x
x=12Which, on verification, satisfies the equation.
Question 39. tan[2tan1(15)π4]=
  1.    177
  2.    −177
  3.    717
  4.    −717
 Discuss Question
Answer: Option D. -> −717
:
D
tan[2tan1(15)π4]=tan[tan1251125tan1(1)]
=tan[tan1512tan1(1)]=tantan1(51211+512)=717
Question 40. The value of sin[2tan1(13)]+cos[tan1(22)]=
  1.    1615
  2.    1415
  3.    1215
  4.    1115
 Discuss Question
Answer: Option B. -> 1415
:
B
sin[2tan1(13)]+cos[tan1(22)]
=sin[tan123119]+cos[tan1(22)]
=sin[tan134]+cos[tan122]
=tan122=cos113
Alsotan134=sin135
=35+13=1415.

Latest Videos

Latest Test Papers