Sail E0 Webinar

12th Grade > Mathematics

INVERSE TRIGONOMETRIC FUNCTIONS MCQs

Total Questions : 60 | Page 5 of 6 pages
Question 41. 3cos1xπxπ2=0 has :
 
  1.    One solution
  2.    Infinite solutions
  3.    No solution
  4.    None of these
 Discuss Question
Answer: Option A. -> One solution
:
A
3cos−1x−πx−π2=0 Has : 
3cos1xπx+π2
Clearly graphs of y=3cos1x and y=πx+π2 in the domain of cos1x i.e., in [-1, 1] intersect only once, therefore there is only one solution of the given equation.
Question 42. The value of cos1(cos12)sin1(sin14) is
  1.    −2
  2.    8π−26
  3.    4π+2
  4.    None of these
 Discuss Question
Answer: Option D. -> None of these
:
D
cos1(cos12)sin1(sin14)4π12+5π14=9π26
Question 43. 4tan115tan11239 is equal to
  1.    π
  2.    π2
  3.    π3
  4.    π4
 Discuss Question
Answer: Option D. -> π4
:
D
Since 2tan1x=tan12x1x2
4tan115=2[2tan115]=2tan1251125
=2tan11024=tan120241100576=tan1120119
So, 4tan115tan11239=tan1120119tan11239
=tan112011912391+120119.1239=tan1(120×239)119(119×239)+120
tan11=π4.
Question 44. If cos1x+cos1y+cos1z=3π, then xy+yz+zx=
 
  1.    0
  2.    1
  3.    3
  4.    -3
 Discuss Question
Answer: Option C. -> 3
:
C
Given cos1x+cos1y+cos1z=3π
0cos1xπ
0cos1yπ and 0cos1zπ
Here cos1x=cos1y=cos1z=π
x=y=z=cosπ=1
xy+yz+zx=(1)(1)+(1)(1)+(1)(1)
=1+1+1=3.
Question 45. sin(12cos145)=
  1.    1√10
  2.    −1√10
  3.    110
  4.    −110
 Discuss Question
Answer: Option A. -> 1√10
:
A
Let 0xπ
So,cos145=xcosx=45 ....(i)
Now sin(12cos145)=sin(x2) ....(ii)
From (i), cosx=4512sin2x2=45
2sin2x2=145=15sinx2=110.
Question 46. cos1x=tan11x2x, then:
 
  1.    X∈R
  2.    −≤x≤1,x≠0
  3.    0
  4.    None of these
 Discuss Question
Answer: Option C. -> 0
:
C
Putting θ=cos1x in R.H.S., we have
R.H.S =tan11x2x=tan11cos2θcosθ(0θπ)=tan1sinθcosθ=tan1tanθ=θ=cos1x when π2<θ<π2
i.e., when 0θ<π2
i.e., when 0<cosθ1 i.e., 0<x1.
Question 47. Total number of positive integral value of `n' such that the equations cos1x+(sin1y)2=nπ24 and (sin1y)2cos1x=π216 are consistent, is equal to :
  1.    1
  2.    4
  3.    3
  4.    2
 Discuss Question
Answer: Option A. -> 1
:
A
(sin1y)2+cos1x=nπ24
(sin1y)2cos1x=π216
(sin1y)2=(4n+1)π232,cos1x=π2(4n1)32
0(4n+1)32π2π24,0(4n1)32π2π
14n74,14,n8π+14
Question 48. If cos1p+cos11p+cos11q=3π4, then the value of q is
  1.    1
  2.    1√2
  3.    13
  4.    12
 Discuss Question
Answer: Option D. -> 12
:
D
Let α=cos1p:β=cos11p
and γ=cos11q or cosα=p:cosβ=1p
and cosγ=1q.
Therefore sinα=1p,sinβ=p and sinγ=q.
The given equation may be written as α+β+γ=3π4orα+β=3π4γ or cos(α+β)=cos(3π4γ)
cosαcosβsinαsinβ = cos{π(π4+γ)}=cos(π4+γ)
p1p1pp=(121q12.q)
0=1qq1q=qq=12.
Question 49. The value of sin1{cot(sin1(234)+cos1124+sec12)} is:
  1.    0
  2.    π4
  3.    π6
  4.    π2
 Discuss Question
Answer: Option A. -> 0
:
A
cos1124=cos132=π6,sec12=π4
sin1234=sin14238=sin13122=π12
sin1234+cos1124+sec12=π2
and sin1(cotπ2)=sin10=0
Question 50. The set of values of p for which x2px+sin1(sin4)>0 for all real x is given by :
 
  1.    (–4,4)
  2.    (−∞,−4)∪(4,∞)
  3.    ϕ
  4.    None of these
 Discuss Question
Answer: Option C. -> ϕ
:
C
x2px+sin1(sin4)>0 for all real x.
x2px+sin1(sin4)>0
x2px+(π4)>0xϵR
D=p24(π4)<0 p2+164π<0
Since 164π>0,p2+164π cannot be negative for any value of pϵR.
Set of values of p=ϕ

Latest Videos

Latest Test Papers