Sail E0 Webinar

11th And 12th > Mathematics

INDEFINITE INTEGRATION MCQs

Total Questions : 30 | Page 1 of 3 pages
Question 1.


If In=tannxdx,then I0+I1+2(I2+...I8)+I9+I10, is equal to


  1.     9n=1tannxn
  2.     1+8n=1tannxn
  3.     9n=1tannxn+1
  4.     10n=2tannxn+1
 Discuss Question
Answer: Option A. -> 9n=1tannxn
:
A
We have        In=tannxdx=tann2x(sec2x1)dx=tann1xn1In2i.e.In2+In=tann1xn1(n2)
Thus, we have
    I0+I1+2(I2+....+I8)+I9+I10=(I0+I2)+(I1+I3)+(I2+I4)+(I3+I5)+(I4+I6)+(I5+I7)+(I6+I8)+(I7+I9)+(I8+I10).=10n=2tann1xn1=9n=1tannxn
Question 2.


Primitive of f(x)=x.2In(x2+1) with respect to x  is


  1.     2In(x2+1)(x2+1)+C
  2.     (x2+1)2In(x2+1)In2+1+C
  3.     (x2+1)In2+12(In2+1)+C
  4.     (x2+1)In22(In2+1)+C
 Discuss Question
Answer: Option C. -> (x2+1)In2+12(In2+1)+C
:
C
I=x2In(x2+1)dx let x2+1=t;xdx=dt2
Hence I=122Intdt=12tIn2dt=12.tIn2+1In2+1+C=12.(x2+1)In2+1In2+1+C
Question 3.


cos3x+cos5xsin2x+sin4xdx equals


  1.     sinx6tan1(sinx)+c
     
  2.     sinx2sin1x+c
     
  3.     sinx2(sinx)16tan1(sinx)+c
     
  4.     sinx2(sinx)1+5tan1(sinx)+c
 Discuss Question
Answer: Option C. -> sinx2(sinx)16tan1(sinx)+c
 

:
C
sinx=t;I=(1t2)(2t2)t2(1+t2)dt=(1+2t261+t2)dt
=sinx2(sinx)16tan1(sinx)+c
 
Question 4.


dx(x3)(4/5)(x+1)6/5=


  1.     ((x3)(x+1)(1/5))+c
  2.     54(x3x+1)1/5+c
  3.     (x3x+1)1/5+c
  4.     (x3)6/5(x+1)4/5+c
 Discuss Question
Answer: Option B. -> 54(x3x+1)1/5+c
:
B
I=dx(x3)4/5(x+1)6/5Put t=x3x+1dt=4(x+1)2dx.I=14dtt4/5=14(t4/5+14/5+1)=54 t1/5=54(x3x+1)1/5
Question 5.


Let x2nπ1,nϵN. Then, the value of x2sin(x2+1)sin2(x2+1)2sin(x2+1)+sin2(x2+1)dx is equal to


  1.     log|12sec(x2+1)|+C
  2.     log|sec(x2+12)|+C
  3.     12log|sec(x2+1)|+C
  4.     None of these
 Discuss Question
Answer: Option B. -> log|sec(x2+12)|+C
:
B
We have,        x2sin(x2+1)sin2(x2+1)2sin(x2+1)+sin2(x2+1)dx    =x2sin(x2+1)2sin(x2+1)cos(x2+1)2sin(x2+1)+2sin(x2+1)cos(x2+1)dx    =x1cos(x2+1)1+cos(x2+1)dx    =xtan(x2+12)dx    =tan(x2+12)d(x2+12)    =log|sec(x2+12)|+C
Question 6.


dxcos(2x)cos(4x)is equal to


  1.     122log|1+2 sin 2x12 sin 2x|12(log|sec 2x+tan 2x|)+C
  2.     122log|1+2 sin 2x1+2 sin 2x|12(log|sec 2x+tan 2x|)+C
  3.     12log|1+2 sin 2x1+2 sin 2x|12(log|sec 2xtan 2x|)+C
  4.     None of these
 Discuss Question
Answer: Option A. -> 122log|1+2 sin 2x12 sin 2x|12(log|sec 2x+tan 2x|)+C
:
A
sin(4x2x)dxsin(2x)cos(2x)cos(4x)=sin(4x)dxsin(2x)cos(4x)sec 2x dx=2cos2x dxcos4x12(log|sec 2x+tan 2x|)
Question 7.


17 cos2xsin7xcos2xdx=f(x)(sinx)7+C, then f(x) is equal to


  1.     sin x
  2.     cos x
  3.     tan x
  4.     cot x
 Discuss Question
Answer: Option C. -> tan x
:
C
17 cos2xsin7xcos2xdx=(sec2xsin7x7sin7x)dx=sec2xsin7xdx7sin7dx=I1+I2Now,I1=sec2xsin7dx=tan xsin7x+7tanx cosxsin8x=tan xsin7xI2I1+I2=tan xsin7x+Cf(x)=tanx
Question 8.


ex[x3+x+1(1+x2)3/2]dx is equal to


  1.     x2ex(1+x2)1/2+c
  2.     exx(1+x2)1/2+c
  3.     ex(1+x2)1/2+c
  4.     xex(1+x2)1/2+c
 Discuss Question
Answer: Option D. -> xex(1+x2)1/2+c
:
D

I=ex[x1+x2+1(1+x2)3/2]dx
Let f(x)=x1+x2f(x)=1+x2x21+x2(1+x2)
=1(1+x2)3/2
I=exf(x)+c
=exx1+x2+c


Question 9.


dxsin4x+cos4 x is equal to


  1.     12tan1(12tan 2x)+C
  2.     2tan1(12tan 2x)+C
  3.     12tan1(12cot 2x)+C
  4.     None of these
 Discuss Question
Answer: Option A. -> 12tan1(12tan 2x)+C
:
A
dxsin4 x +cos4 x=dx(sin2 x+cos2 x)22 sin2 x cos2 x=2 dx2sin2 2x=2 sec2 2x2 sec2 2xtan2 2xdx=2sec2 2x2+tan2 2xdx=dt(2)2+t2[putting tan 2x=t2 sec2 2x dx=dt]=12tan1(t2)+C=12tan1(12tan 2x)+C
Question 10.


If dxx1x3=a log1x311x3+1+C then a =


  1.     13
  2.     23
  3.     13
  4.     23
 Discuss Question
Answer: Option A. -> 13
:
A

Put<br>        1x3=t23x2 dx=2t dt    dxx1x3=x2x31x3dx=23dtt21    =13 logt1t+1+C    =13 log1x311x3+1+C    a=13


Latest Videos

Latest Test Papers