Sail E0 Webinar

Quantitative Aptitude

HEIGHT AND DISTANCE MCQs

Total Questions : 206 | Page 15 of 21 pages
Question 141. The angles of elevation of the top of from two points P and Q at distance $${{m^2}}$$ and $${{n^2}}$$ respectively, from the base and in the same straight line with it are complementary. The height of the tower is-
  1.    $${\left( {mn} \right)^{\frac{1}{2}}}$$
  2.    $$m{n^{\frac{1}{2}}}$$
  3.    $${m^{\frac{1}{2}}}n$$
  4.    $$mn$$
 Discuss Question
Answer: Option D. -> $$mn$$
$$\eqalign{
& {\text{tan }}\theta = \frac{H}{{{m^2}}} \cr
& \Rightarrow \tan \left( {90^ \circ - \theta } \right) = \frac{H}{{{n^2}}} \cr
& \Rightarrow \cot \theta = \frac{H}{{{n^2}}} \cr
& \Rightarrow \tan \theta .\cot \theta = \frac{H}{{{m^2}}} \times \frac{H}{{{n^2}}} \cr
& \Rightarrow \frac{H}{{{m^2}}} \times \frac{H}{{{n^2}}} = 1 \cr
& \Rightarrow {H^2} = {m^2}{n^2} \cr
& \Rightarrow H = mn \cr} $$
Question 142. A boy is standing at the top of the tower and another boy is at the ground at some distance from the foot of the tower, then the angle of elevation and depression between the boys when both look at a each other will be-
  1.    Equal
  2.    Angle of elevation will be greater
  3.    Cannot be predicted for relation
  4.    Angle of depression will be greater
 Discuss Question
Answer: Option A. -> Equal
$$\eqalign{
& {\text{Here, AD is parallel to BC and AC is a transversal}}{\text{.}} \cr
& \Rightarrow {\theta _1} = {\theta _2} \cr} $$
Question 143. A man is watching from the top of tower a boat speeding away from the tower. The boat makes an angle of depression of 45° with the man’s eye when at a distance of 60 meters from the tower. After 5 seconds, the angle of depression becomes 30°. What is the approximate speed of the boat, assuming that it is running in still water?
  1.    32 kmph
  2.    36 kmph
  3.    38 kmph
  4.    40 kmph
  5.    42 kmph
 Discuss Question
Answer: Option A. -> 32 kmph
Let AB be the tower and C and D be the two positions of the boats.
Then, $$\angle {\text{ACB = }}{45^ \circ },$$    $$\angle ADB = {30^ \circ }$$     and AC = 60 m
Let, AB = h
$$\eqalign{
& {\text{Then,}}\frac{{AB}}{{AC}} = \tan {45^ \circ } = 1 \cr
& \Rightarrow AB = AC \cr
& \Rightarrow h = 60\,m \cr
& {\text{And}}\frac{{AB}}{{AD}} = \tan {30^ \circ } = \frac{1}{{\sqrt 3 }} \cr
& \Rightarrow AD = \left( {AB \times \sqrt 3 } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = 60\sqrt 3 \,m \cr
& \therefore CD = \left( {AD - AC} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\, = 60\left( {\sqrt 3 - 1} \right)\,m \cr
& {\text{Hence, required speed }} \cr
& {\text{ = }}\left[ {\frac{{60\left( {\sqrt 3 - 1} \right)}}{5}} \right]{\text{m/s}} \cr
& {\text{ = }}\left( {12 \times 0.73} \right){\text{m/s}} \cr
& = \left( {12 \times 0.73 \times \frac{{18}}{5}} \right){\text{km/hr}} \cr
& = {\text{31}}{\text{.5km/hr }} \approx {\text{ 32km/hr}} \cr} $$
Question 144. If the height of a vertical pole is $$\sqrt 3 $$ times the length of its shadow on the ground, then the angle of elevation of the sun at that time is
  1.    30°
  2.    60°
  3.    45°
  4.    75°
 Discuss Question
Answer: Option B. -> 60°
Let AB be a vertical pole and let its shadow be BC
Let BC = x m, then length of pole = $$\sqrt 3 $$ x,
$$\theta $$ be the angle of elevation
$$\eqalign{
& \therefore {\text{tan}}\theta = \frac{{AB}}{{BC}} = \frac{{\sqrt 3 \,x}}{x} = \sqrt 3 \cr
& = \tan {60^ \circ } \cr
& \therefore \theta = {60^ \circ } \cr} $$
Question 145. If the angle of elevation of a tower from a distance of 100 metres from its foot is 60?, the height of the tower is
  1.    $$100\sqrt 3 \,m$$
  2.    $$\frac{{100}}{{\sqrt 3 }}\,m$$
  3.    $$50\sqrt 3 \,m$$
  4.    $$\frac{{200}}{{\sqrt 3 }}\,m$$
 Discuss Question
Answer: Option A. -> $$100\sqrt 3 \,m$$
Let AB be the tower and a point P at a distance of 100 m from its foot, angle of elevation of the top of the tower is 60°
Let height of the tower = h
$$\eqalign{
& {\text{Then in right }}\Delta ABP \cr
& \tan \theta = \frac{{{\text{Perpendicular}}}}{{{\text{Base}}}} = \frac{{AB}}{{PB}} \cr
& \Rightarrow \tan {60^ \circ } = \frac{h}{{100}} \Rightarrow \sqrt 3 = \frac{h}{{100}} \cr
& \Rightarrow h = 100\sqrt 3 \cr
& \therefore {\text{Height}}\,{\text{of}}\,{\text{tower}} = 100\sqrt 3 \cr} $$
Question 146. The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are 100 m apart, the height of the light house is
  1.    $$\frac{{50}}{{\sqrt 3 + 1}}m$$
  2.    $$\frac{{50}}{{\sqrt 3 - 1}}m$$
  3.    $$50\left( {\sqrt 3 - 1} \right)m$$
  4.    $$50\left( {\sqrt 3 + 1} \right)m$$
 Discuss Question
Answer: Option C. -> $$50\left( {\sqrt 3 - 1} \right)m$$
Let AB be the light house C and D are two ships whose angles of depression on A are 30° and 45° respectively
∠ACB = ∠XAC = 30° , ∠ADB = ∠YAD = 45° and
CD = 100m
Let AB =h and CB = x then BC = (100 - x)m
$$\eqalign{
& {\text{Now in }}\,\Delta ACB, \cr
& \tan \theta = \frac{{AB}}{{CB}} \cr
& \tan {30^ \circ } = \frac{h}{x} \cr
& \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{h}{x} \cr
& \Rightarrow x = \sqrt 3 h ......{\text{(i)}} \cr
& {\text{Similarly in }}\,\Delta ADB \cr
& \tan {45^ \circ } = \frac{{AB}}{{BD}} \cr
& \Rightarrow 1 = \frac{h}{{100 - x}} \cr
& \Rightarrow x = 100 - h \,......{\text{(ii)}} \cr
& {\text{From (i) and (ii)}} \cr
& \sqrt 3 h = 100 - h \cr
& \Rightarrow (\sqrt 3 - 1)h = 100 \cr
& h = \frac{{100}}{{\sqrt 3 + 1}} \cr
& \,\,\,\,\,\, = \frac{{100\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \cr
& \,\,\,\,\,\, = \frac{{100\left( {\sqrt 3 - 1} \right)}}{{3 - 1}} \cr
& \,\,\,\,\,\, = \frac{{100\left( {\sqrt 3 - 1} \right)}}{2} \cr
& \,\,\,\,\,\, = 50\left( {\sqrt 3 - 1} \right) \cr} $$
∴ height of light house $$ = 50\left( {\sqrt 3 - 1} \right)m$$
Question 147. Two persons are 'a' meters apart and the height of one is double that of the other. If from the middle point of the line joining their feet, an observer finds the angular elevation of their tops to be complementary, then the height of the shorter post is
  1.    $$\frac{a}{4}$$
  2.    $$\frac{a}{{\sqrt 2 }}$$
  3.    $$a\sqrt 2 $$
  4.    $$\frac{a}{{2\sqrt 2 }}$$
 Discuss Question
Answer: Option D. -> $$\frac{a}{{2\sqrt 2 }}$$
Let AB and CD are two persons standing ‘a’ meters apart
P is the mid-point of BD and from M, the angles of elevation of A and C are complementary
$$\eqalign{
& {\text{In}}\,\,\Delta {\text{APB,}} \cr
& \tan \theta = \frac{{AB}}{{BP}} = \frac{h}{{\frac{a}{2}}} = \frac{{2h}}{a} \cr
& {\text{In}}\,\,\Delta {\text{CDP,}} \cr
& \cot (90 - \theta ) = \frac{{PD}}{{CD}} = \frac{{\frac{a}{2}}}{{2h}} = \frac{a}{{4h}} \cr
& {\text{We}}\,\,{\text{Know}}\,\,{\text{that,}} \cr
& \tan \theta = \cot (90 - \theta ). \cr
& \therefore \frac{{2h}}{a} = \frac{a}{{4h}} \cr
& \Rightarrow 8{h^2} = {a^2} \cr
& \Rightarrow h = \frac{a}{{2\sqrt 2 }} \cr} $$
Question 148. The angle of depression of a car, standing on the ground, from the top of a 75 m tower, is 30°. The distance of the car from the base of the tower (in metres) is
  1.    25 $$\sqrt 3 $$
  2.    50 $$\sqrt 3 $$
  3.    75 $$\sqrt 3 $$
  4.    150
 Discuss Question
Answer: Option C. -> 75 $$\sqrt 3 $$
AB is a tower and AB = 75 m
From A, the angle of depression of a car C
on the ground is 30°
$$\eqalign{
& {\text{Let distance }}BC = x \cr
& {\text{Now in right }}\Delta ACB, \cr
& \tan \theta = \frac{{AB}}{{BC}} \cr
& \Rightarrow \tan {30^ \circ } = \frac{{75}}{x} \cr
& \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{{75}}{x} \cr
& \Rightarrow x = 75\sqrt 3 \,m \cr
& \therefore BC = 75\sqrt 3 \,m \cr} $$
Question 149. If the angles of elevation of a tower from two points distance a and b (a > b) from its foot and in the same straight line from it are 30° and 60°, then the height of the tower is?
  1.    $$\sqrt {a + b} $$
  2.    $$\sqrt {ab} $$
  3.    $$\sqrt {a - b} $$
  4.    $$\sqrt {\frac{a}{b}} $$
 Discuss Question
Answer: Option B. -> $$\sqrt {ab} $$
Let AB be the tower and P and Q are such points that PB = a, QB = b and angles of elevation at P and Q are 30° and 60° respectively
$$\eqalign{
& {\text{Let }}AB = h \cr
& {\text{Now in right }}\Delta APB, \cr
& \tan \theta = \frac{{{\text{Perpendicular}}}}{{{\text{Base}}}} = \frac{{AB}}{{PB}} \cr
& \Rightarrow \tan {30^ \circ } = \frac{h}{a} \cr
& \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{h}{a}\,...........(i) \cr
& {\text{Similarly in right }}\Delta AQB, \cr
& \tan {60^ \circ } = \frac{{AB}}{{QB}} \cr
& \Rightarrow \sqrt 3 = \frac{h}{b}\,...........(ii) \cr
& {\text{Multiplying (i) and (ii)}} \cr
& \frac{1}{{\sqrt 3 }} \times \sqrt 3 = \frac{h}{a} \times \frac{h}{b} \cr
& \Rightarrow 1 = \frac{{{h^2}}}{{ab}} \cr
& \Rightarrow {h^2} = ab \cr
& \Rightarrow h = \sqrt {ab} \cr
& \therefore {\text{Height of the tower}} = \sqrt {ab} \cr} $$
Question 150. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, then the height of the wall is
  1.    $$15\sqrt 3 \,m$$
  2.    $$\frac{{15\sqrt 3 }}{2}\,m$$
  3.    $$\frac{{15}}{2}\,m$$
  4.    $$15\,m$$
 Discuss Question
Answer: Option B. -> $$\frac{{15\sqrt 3 }}{2}\,m$$
Let AB is a wall and AC is the ladder 15 m long which makes an angle of 60° with the ground
∴ In ∆ABC, ∠B = 90°
Let height of wall AB = h
Then
$$\sin \theta = \frac{{AB}}{{AC}} \Rightarrow \sin {60^ \circ } = \frac{h}{{15}}$$
$$\eqalign{
& \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{h}{{15}} \cr
& \Rightarrow h = \frac{{15\sqrt 3 }}{2}\,m \cr} $$
∴ Height of the wall $$ = \frac{{15\sqrt 3 }}{2}\,m$$

Latest Videos

Latest Test Papers