Sail E0 Webinar

Quantitative Aptitude

GEOMETRY MCQs

Coordinate Geometry, Coordinate Geometry (10th Grade), Three Dimensional Geometry (10th Grade)

Total Questions : 133 | Page 6 of 14 pages
Question 51.

The lines 3x - 4y + 6 = 0 and 4x + 3y - 10 = 0 are mutually

  1.    parralel
  2.    perpendicular
  3.    none of these
 Discuss Question
Answer: Option B. -> perpendicular
Question 52. The point C (–1,2) divides the line segment AB in the ratio 3:4, where the coordinates of A is (2, 5). The coordinates of B are___________.
  1.    (–5, –2)
  2.    (–1, – 2)
  3.    (–4, – 2)
  4.    (5, – 4)
 Discuss Question
Answer: Option A. -> (–5, –2)
:
A
If a point P(x,y) divides a line segment joining (x1,y1)and(x2,y2) in the ratiom:n, then the coordinates of P are given by:
x=mx2+nx1m+n,y=my2+ny1m+n
Let C(1,2) dividethe line joining A(2,5) and B(x,y) in the ratio 3:4.
Then,
C(3x+87,3y+207) = C(-1, 2)
3x+87=13x+8=7x=53y+207=23y+20=14y=2
Thus, thecoordinates of B are B(5,2).
Question 53. The points (a,a),(a,a) and (3a,3a) are the vertices of a/an  _____ triangle.
  1.    scalene
  2.    right angled
  3.    isosceles right angled
  4.    equilateral
 Discuss Question
Answer: Option D. -> equilateral
:
D
Let's name the points asA(a,a),B(a,a) and C(3a,3a).
By distance formula, distance between points (x1,y1) and (x2,y2)
=(x2x1)2+(y2y1)2
BC=(3a+a)2+(3a+a)2=a2+(3a)22×a×3a+3a)2+a2+2×a×3aBC=8a2=22aunitsSimilarlyAB=(a+a)2+(a+a)2=8a2=22aunitsAC=(3aa)2+(3aa)2=8a2=22aunits
Weget,AB=BC=AC=22aunitsABC is an equilateral triangle.
Question 54. Mid-point of the line-segment joining the points (– 5, 4) and (9, – 8) is: 
  1.    (– 7, 6) 
  2.    (2, – 2) 
  3.    (7, – 6) 
  4.    (– 2, 2)
 Discuss Question
Answer: Option B. -> (2, – 2) 
:
B
Midpoint of theline segment joining (x1,y1) and (x2,y2) is given by (x1+x22,y1+y22)
Mid-point of the line-segment joining the points (– 5, 4) and (9, – 8) = (5+92,482) = (2,-2)
Question 55. The co-ordinates of the points which divides the line joining (– 2, – 2) and (– 5, 7) in the ratio 2 : 1 is _____.
  1.    (4, – 4)
  2.    (– 3, 1)
  3.    (– 4, 4)
  4.    (1, – 3)
 Discuss Question
Answer: Option C. -> (– 4, 4)
:
C
If a point P(x,y) divides the line joining (x1,y1)and(x2,y2) in the ratio m:n
thenx = mx2+nx1m+n and y =my2+ny1m+n
x = mx2+nx1m+n = 2(5)+1(2)2+1 = -4
and y = my2+ny1m+n = 2(7)+1(2)2+1 = 4
the required point is (-4,4).
Question 56. If the direction cosines of a variable line in two adjacent positions be l, m, n and l + a, m + b, n + c and the small angle between the two positions be θ, then :
  1.    θ=a+b+c
  2.    θ2=a2+b2+c2
  3.    |θ|=|a|+|b|+|c|
  4.    θ3=a3+b3+c3
 Discuss Question
Answer: Option B. -> θ2=a2+b2+c2
:
B
l2+m2+n2=1,(l+a)2+(m+b)2+(n+c)2=1al+bm+cn=12(a2+b2+c2)
If The Direction Cosines Of A Variable Line In Two Adjacent ...
cosθ=(a+l)l+m(b+m)+n(c+n)
= 1 + al + bm + cn
a2+b2+c2=2(1cosθ)=4sin2(θ2)
Since θ is small, sin(θ2)θ2
θ2=a2+b2+c2[sin2(θ2)θ24]
Question 57. Direction cosines of the line which is perpendicular to the lines whose direction ratios are 1, –1, 2 and 2, 1, –1 are given by :
  1.    [−1√35,5√35,3√35]
  2.    [−1√35,−5√35,3√35]
  3.    [1√35,5√35,−3√35]
  4.    [1√35,−7√35,−3√35]
 Discuss Question
Answer: Option A. -> [−1√35,5√35,3√35]
:
A
If l, m, n are the d.c.’s of the line which is perpendicular to the given lines, then
l – m + 2n = 0 and 2l + m –n = 0
l12=m4+1=n1+2l1=m5=n3.
so d.r's =(1,5,3)
Question 58. The equation of the plane passing through the points (1,-3,-2) and perpendicular to planes x +2y+2z=5 and 3x+3y+2z=8, is 
  1.    2x -4y +3z-8 =0
  2.    2x-4y-3z+8 =0
  3.    2x+4y+3z+8 =0
  4.    x-3y+z-5=0
 Discuss Question
Answer: Option A. -> 2x -4y +3z-8 =0
:
A
l+2m+2n=0, 3l+3m+2n=0, l2+m2+n2=1, we get l, m, nfrom these equations and then putting the values in l(x-1)+m(y+3) +n(z+2)=0, we get the required result.
Trick: Checking conversely,
2(x)-4(y)+3(z)-8 =0,
So, it passes through given point.
1(2)+2(-4)+2(3) =0,
So, it is perpendicular to x+2y+2z=5.
3(2)+3(-4)+2(3)=0,
So, it is perpendicular to 3x+3y +2z=8.
Question 59. If (l1,m1,n1) and (l2,m2,n2,) are d.c.'s of ¯¯¯¯¯¯¯¯¯¯OA, ¯¯¯¯¯¯¯¯OB such that AOB=θ where ‘O’ is the origin,  then the d.c.’s of the internal bisector of the angle AOB  are
  1.    l1+l22sinθ2,m1+m22sinθ2,n1+n22sinθ2
  2.    l1+l22cosθ2,m1+m22cosθ2,n1+n22cosθ2
  3.    l1−l22sinθ2,m1−m22sinθ2,n1−n22sinθ2
  4.    l1−l22cosθ2,m1−m22cosθ2,n1−n22cosθ2
 Discuss Question
Answer: Option B. -> l1+l22cosθ2,m1+m22cosθ2,n1+n22cosθ2
:
B
Let OA and OB be two lines with d.c’s l1,m1,n1 and l2,m2,n2,. Let OA = OB = 1. Then, the coordinates of A and B are (l1,m1,n1) and (l2,m2,n2), respectively. Let OC be the bisector of AOB .Then, C is the mid point of AB and so its coordinates are (l1+l22,m1+m22,n1+n22).
d.r's of OC are l1+l22,m1+m22,n1+n22
We have, OC=(l1+l22)2+(m1+m22)2+(n1+n22)2=12(l21+m21+n21)+(l22+m22+n22)+(l1l2+m1m2+n1n2)=122+2cosθ[Qcosθ=l1l2+m1m2+n1n2]=122(1+cosθ)=cos(θ2)
If (l1,m1,n1) And (l2,m2,n2,) Are D.c.'s Of ¯¯¯¯¯¯¯¯...
d.c's of OC are
l1+l22(OC),m1+m22(OC),n1+n22(OC)
Question 60. If the lines x12=y+13=z14 and x31=yk1=z1 intersect, then k =
  1.    29
  2.    92
  3.    0
  4.    3
 Discuss Question
Answer: Option B. -> 92
:
B
Any point onx12=y+13=z14=λ is,
(2λ+1,3λ1,4λ+1);λR
Any point on x31=yk2=z1=μ is,
(μ+3,2μ+k,μ);μR
the given lines intersect if and only if the system of equations(in λ and μ)
2λ+1=μ+3....(i)
3λ1=2μ+k.....(ii)
4λ+1=μ....(iii)
has a unique solution.
Solving (i) and (iii), we get λ=32,μ=5
From (ii), we get 921=10+kk=92.

Latest Videos

Latest Test Papers