Sail E0 Webinar

11th And 12th > Mathematics

DIFFERENTIAL EQUATIONS MCQs

Total Questions : 30 | Page 1 of 3 pages
Question 1.


The general solution of the differential equation dydx=y tan xy2sec x is


  1.     tan x = (c + sec x)y
  2.     sec y = (c + tan y )x
  3.     sec x = (c + tan x)y
  4.     None of these
 Discuss Question
Answer: Option C. -> sec x = (c + tan x)y
:
C
We have dydx=y tan xy2sec x1y2dydx1ytanx=secx
Putting 1y=v1y2dydx=dvdx, we obtain
dvdx+tan x.v=secxwhich is linear
I.F=etanxdx=elogsecx=secx
 The solution is
v secx=sec2xdx+c1ysecx=tanx+c
secx=y(c+tanx)
Question 2.


If integrating factor of x(1x2)dy+(2x2yyax3)dx=0 is ePdx, then P is equal to


  1.     2x2ax3x(1x2)
     
  2.     (2x21)
     
  3.     2x21ax3
     
  4.     (2x21)x(1x2)
 Discuss Question
Answer: Option D. -> (2x21)x(1x2)
:
D
x(1x2)dy+(2x2yyax3)dx=0dydx+(2x21)x(1x2)y=ax2(1x2),P=2x21x(1x2).
Question 3.


Solution of the equation xdy=(y+xf(yx)f(yx))dx


  1.     f(xy)=cy
  2.     f(yx)=cx
  3.     f(yx)=cxy
  4.     f(yx)=0
 Discuss Question
Answer: Option B. -> f(yx)=cx
:
B
We have, xdy=(y+xf(yx)f(yx))dx
dydx=yx+f(yx)f(yx) which is homogenous
Putting y=vxdydx=v+xdvdx, we obtain
v+xdvdx=v+f(v)f(v)f(v)f(v)dv=dxx
Integrating, we get log f(v)=logx+logc
logf(v)=logcxf(yx)=cx
Question 4.


The solution of the differential equation (1+y2)+(xetan1y)dydx=0, is


  1.     2x etan1y,=e2tan1y+k
  2.     x etan1y,=etan1y+k
  3.     x e2tan1y,=etan1y+k
  4.     (x2)k etan1y
 Discuss Question
Answer: Option A. -> 2x etan1y,=e2tan1y+k
:
A
dxdy+11+y2x=11+y2etan1y
I.F=e11+y2dy=etan1y
Solution is x.etan1y
=etan1y.11+y2etan1dy=12e2 tan1y+12k2x etan1y=e2 tan1y+k
Question 5.


The orthogonal trajectories of the family of curves an1y=xn are given by
 


  1.     xn+n2y =constant
     
  2.     ny2+x2 =constant
     
  3.     n2x+yn=constant
     
  4.     n2xyn =constant 
 Discuss Question
Answer: Option B. -> ny2+x2 =constant
 

:
B
Differentiating, we have an1dydx=nxn1an1=nxn1dxdy
Putting this value in the given equation, we have nxn1dxdyy=xn
Replacing dydxby dydy, we have ny=xdxdy
nydy+xdx=0ny2+x2 =constant. Which is the required family of orthogonal trajectories.
Question 6.


The solution of (y(1+x1)+siny)dx+(x+logx+x cosy)dy=0 is 


  1.     (1+y1siny)+x1logx=C
     
  2.     (y+siny)+xy log x=C
     
  3.     xy+ylogx+x sin y=C
  4.     None of these
 Discuss Question
Answer: Option C. -> xy+ylogx+x sin y=C
:
C
The given equation can be written as y(1+x1)dx+(x+logx)dy+sin ydx+xcos ydy=0
d(y(x+logx))+d(xsiny)=0y(x+logx)+xsiny=C
Question 7.


The solution of y27y1+12y=0 is 


  1.     y=C1e3x+C2e4x
     
  2.     y=C1xe3x+C2e4x
     
  3.     y=C1e3x+C2xe4x
  4.     None of these
 Discuss Question
Answer: Option A. -> y=C1e3x+C2e4x
 

:
A
The given equation can be written as (ddx3)(dydx4y)=0....(i)
If dydx4y=u then (I) reduces to dudx3u=0
duu=3dxu=C1e3x. Therefore, we have dydx4y=C1e3x which is a linear equation whose I.F.is e4x. So ddx(ye4x)=C1ex
ye4x=C1ex+C2y=C1e3x+C2e4x
Question 8.


The solution lof dydxx tan(yx)=1


  1.     c eex22=sin(yx)
  2.     c eex22=sin(y+x)
  3.     c eex22=sin(yx)2
  4.     c eex22=cos(yx)
 Discuss Question
Answer: Option A. -> c eex22=sin(yx)
:
A
Put y-x = z. Then dydx1=dzdxdydx=1+dzdx
Given dydxx tan(yx)=11+dzdxx tan z=1dzdx=x tan z1tanzdz=x dxcotz dz=x dx
log|sin z|logc=x22log|sin zc|=x22=sinzc=ex22sin(yx)=c ex22
The solution is sin(yx)=cex22, where c is arbitrary constant.
Question 9.


Solution of the differential equation : dydx=3x2y4+2xyx22x3y3 is 


  1.     x2y2+x2y=c
     
  2.     x3y2+x2y=c
     
  3.     x3y2+y2x=c
     
  4.     x2y3+x2y=c
 Discuss Question
Answer: Option B. -> x3y2+x2y=c
 

:
B
x2dy2x3y3dy=3x2y4dx+2xydxx2dy2xydx=3x2y4dx+2x3y3dy2xydxx2dyy2+3x2y2dx+2x3ydy=0d(x2y)+d(x3y2)=0x2y+x3y2=C
 
Question 10.


The degree of the differential equation satisfying the relation 1+x2+1+y2=λ(x1+y2y1+x2) is 


  1.     1
  2.     2
  3.     3
  4.     none of these
 Discuss Question
Answer: Option A. -> 1
:
A
On Putting x=tanA,y=tanB we get
secA+secB=λ(tanA secBtanB secA)cosA+cosB=λ(sinAsinB)tan(AB2)=1λtan1xtan1y=2tan11λ
On differentiating 11+x211+y2dydx=0
 

Latest Videos

Latest Test Papers