Sail E0 Webinar

12th Grade > Mathematics

DIFFERENTIAL EQUATIONS MCQs

Total Questions : 60 | Page 6 of 6 pages
Question 51. The degree of the differential equation satisfying the relation 1+x2+1+y2=λ(x1+y2y1+x2) is 
  1.    1
  2.    2
  3.    3
  4.    none of these
 Discuss Question
Answer: Option A. -> 1
:
A
On Putting x=tanA,y=tanB we get
secA+secB=λ(tanAsecBtanBsecA)cosA+cosB=λ(sinAsinB)tan(AB2)=1λtan1xtan1y=2tan11λ
On differentiating 11+x211+y2dydx=0
Question 52. The order of the differential equation of all tangent lines to the parabola y=x2 is 
  1.    1
  2.    2
  3.    3
  4.    4
 Discuss Question
Answer: Option A. -> 1
:
A
The parametric form of the given equation is x=t,y=t2.The equation of any tangent at t is 2xt=y+t2, Differentiating we get 2t=y1(=dydx) putting this value in the above equation, we have 2xy12=y+(y12)24xy1=4y+y21
The order of this equation is 1
Hence (A) is the correct answer
Question 53. The solution of (y(1+x1)+siny)dx+(x+logx+x cosy)dy=0 is 
  1.    (1+y−1siny)+x−1logx=C  
  2.    (y+siny)+xy log x=C  
  3.    xy+ylogx+x sin y=C
  4.    None of these
 Discuss Question
Answer: Option C. -> xy+ylogx+x sin y=C
:
C
The given equation can be written as y(1+x1)dx+(x+logx)dy+sinydx+xcosydy=0
d(y(x+logx))+d(xsiny)=0y(x+logx)+xsiny=C
Question 54. The solution of y27y1+12y=0 is 
  1.    y=C1e3x+C2e4x  
  2.    y=C1xe3x+C2e4x  
  3.    y=C1e3x+C2xe4x
  4.    None of these
 Discuss Question
Answer: Option A. -> y=C1e3x+C2e4x  
:
A
The given equation can be written as (ddx3)(dydx4y)=0....(i)
If dydx4y=u then (I) reduces to dudx3u=0
duu=3dxu=C1e3x.Therefore, we have dydx4y=C1e3xwhich is a linear equation whose I.F.is e4x. So ddx(ye4x)=C1ex
ye4x=C1ex+C2y=C1e3x+C2e4x
Question 55. The general solution of  y2 dx+(x2xy+y2)dy=0 is
[EAMCET 2003]
  1.    tan−1(xy)+log y+c=0
  2.    2 tan−1(xy)+log x+c=0
  3.    log(y+√x2+y2)+log y+c=0
  4.    sin h−1(xy)+log y+c=0
 Discuss Question
Answer: Option A. -> tan−1(xy)+log y+c=0
:
A
dxdy+x2xy+y2y2=0dxdy+(xy)2(xy)+1=0
Put v=x/yx=vydxdy=v+ydvdyv+ydvdy+v2v+1=0dvv2+1+dyy=0dvv2+1+dyy=0tan1(v)+logy+C=0tan1(x/y)+logy+c=0.
Question 56. The solution of the differential equation (1+y2)+(xetan1y)dydx=0, is
  1.    2x etan−1y,=e2tan−1y+k
  2.    x etan−1y,=etan−1y+k
  3.    x e2tan−1y,=e−tan−1y+k
  4.    (x−2)k etan−1y
 Discuss Question
Answer: Option A. -> 2x etan−1y,=e2tan−1y+k
:
A
dxdy+11+y2x=11+y2etan1y
I.F=e11+y2dy=etan1y
Solution is x.etan1y
=etan1y.11+y2etan1dy=12e2tan1y+12k2xetan1y=e2tan1y+k
Question 57. The order and degree of the differential equation y=xdydx+a2(dydx)2+b2 are
  1.    1,2
  2.    2,1
  3.    1,1
  4.    2,2
 Discuss Question
Answer: Option A. -> 1,2
:
A
Given differential equation can be written as
y2=x2(dydx)22xy.dydx=a2(dydx)2+b2.
Hence it is of 1storder and 2nddegree differential equation.
Question 58. The solution lof dydxx tan(yx)=1
  1.    c eex22=sin(y−x)
  2.    c eex22=sin(y+x)
  3.    c eex22=sin(y−x)2
  4.    c eex22=cos(y−x)
 Discuss Question
Answer: Option A. -> c eex22=sin(y−x)
:
A
Put y-x = z. Then dydx1=dzdxdydx=1+dzdx
Given dydxxtan(yx)=11+dzdxxtanz=1dzdx=xtanz1tanzdz=xdxcotzdz=xdx
log|sinz|logc=x22log|sinzc|=x22=sinzc=ex22sin(yx)=cex22
The solution is sin(yx)=cex22, where c is arbitrary constant.
Question 59. The order and degree of the differential equation [4+(dydx)2]2/3=d2ydx2 are
  1.    2,2
  2.    3,3
  3.    2,3
  4.    3,2
 Discuss Question
Answer: Option C. -> 2,3
:
C
Here power on the differential coefficient is fractional, therefore change it into positive integer, so
[4+(dydx)2]2/3=d2ydx2[4+(dydx)2]2=[d2ydx2]3
Hence order is 2 and degree is 3.
Question 60. If integrating factor of x(1x2)dy+(2x2yyax3)dx=0 is ePdx, then P is equal to
  1.    2x2−ax3x(1−x2)  
  2.    (2x2−1)  
  3.    2x2−1ax3  
  4.    (2x2−1)x(1−x2)
 Discuss Question
Answer: Option D. -> (2x2−1)x(1−x2)
:
D
x(1x2)dy+(2x2yyax3)dx=0dydx+(2x21)x(1x2)y=ax2(1x2),P=2x21x(1x2).

Latest Videos

Latest Test Papers