Sail E0 Webinar

12th Grade > Mathematics

DIFFERENTIAL EQUATIONS MCQs

Total Questions : 60 | Page 1 of 6 pages
Question 1. The solution of (y(1+x1)+siny)dx+(x+logx+x cosy)dy=0 is 
  1.    (1+y−1siny)+x−1logx=C  
  2.    (y+siny)+xy log x=C  
  3.    xy+ylogx+x sin y=C
  4.    None of these
 Discuss Question
Answer: Option C. -> xy+ylogx+x sin y=C
:
C
The given equation can be written as y(1+x1)dx+(x+logx)dy+sinydx+xcosydy=0
d(y(x+logx))+d(xsiny)=0y(x+logx)+xsiny=C
Question 2. The solution of y27y1+12y=0 is 
  1.    y=C1e3x+C2e4x  
  2.    y=C1xe3x+C2e4x  
  3.    y=C1e3x+C2xe4x
  4.    None of these
 Discuss Question
Answer: Option A. -> y=C1e3x+C2e4x  
:
A
The given equation can be written as (ddx3)(dydx4y)=0....(i)
If dydx4y=u then (I) reduces to dudx3u=0
duu=3dxu=C1e3x.Therefore, we have dydx4y=C1e3xwhich is a linear equation whose I.F.is e4x. So ddx(ye4x)=C1ex
ye4x=C1ex+C2y=C1e3x+C2e4x
Question 3. The solution of dydx=yx+tanyx is
  1.    y sin(yx)=cx
  2.    y sin(yx)=cy
  3.    sin(xy)=cx
  4.    sin(yx)=cx
 Discuss Question
Answer: Option D. -> sin(yx)=cx
:
D
Put y=vx.Thendydx=v+xdvdx
Given equation is dydx=vx+tanyxv+xtanvcotvdv=dxxlogsinv=logx+logc
sinv=cxsin(yx=cx)
Question 4. The solution of dydx+xy=x2 is
  1.    1y=cx−xlog x
  2.    1x=cy−ylog y
  3.    1x=cx−xlog y
  4.    1y=cx−ylog x
 Discuss Question
Answer: Option B. -> 1x=cy−ylog y
:
B
dxdy+xy=x2x2dxdy+x1y=1
Put x1=t.Thenx2dxdy=dtdyx2dxdy=dtdydtdy+ty=1dtdy1yt=1
It is linear in t. Here P=1y.Q=1
I.F=e(1y)dy=elogy=1y
Solution is t(1y)=(1)1ydy=logy+ct=ylogy+cyx1cyylogy.
Question 5. Solution of the equation xdy=(y+xf(yx)f(yx))dx
  1.    f(xy)=cy
  2.    f(yx)=cx
  3.    f(yx)=cxy
  4.    f(yx)=0
 Discuss Question
Answer: Option B. -> f(yx)=cx
:
B
We have, xdy=(y+xf(yx)f(yx))dx
dydx=yx+f(yx)f(yx)which is homogenous
Putting y=vxdydx=v+xdvdx, we obtain
v+xdvdx=v+f(v)f(v)f(v)f(v)dv=dxx
Integrating, we get log f(v)=logx+logc
logf(v)=logcxf(yx)=cx
Question 6. A function y =f(x) has a second order derivative f"=6(x-1). If its graph passes through the point(2,1) and at that point the tangent to the graph is y =3x -5, then the function is 
  1.    (x−1)2  
  2.    (x−1)3  
  3.    (x+1)2  
  4.    (x+1)3
 Discuss Question
Answer: Option B. -> (x−1)3  
:
B
Since f"(x)=6(x-1)
f(x)=3(x1)2+c (integrating) ----(i)
Also, at the point (2,1), the tangent to the graph is y =3x-5and slope of thetangent = 3
f(2)=3
3(21)3+c=3 [from eq(i)
3+c=3c=0
From Eq (i) we have
f(x)=3(x1)2
f(x)=(x1)3+k (Integrating)----(ii)
1=(21)3+kk=0
Hence the equation of the function is f(x)=(x1)3.
Question 7. Solution of the differential equation : dydx=3x2y4+2xyx22x3y3 is 
  1.    x2y2+x2y=c  
  2.    x3y2+x2y=c  
  3.    x3y2+y2x=c  
  4.    x2y3+x2y=c
 Discuss Question
Answer: Option B. -> x3y2+x2y=c  
:
B
x2dy2x3y3dy=3x2y4dx+2xydxx2dy2xydx=3x2y4dx+2x3y3dy2xydxx2dyy2+3x2y2dx+2x3ydy=0d(x2y)+d(x3y2)=0x2y+x3y2=C
Question 8. The curves satisfying the differential equation (1x2)y1+xy=ax are
  1.    ellipses and hyperbolas
  2.    ellipses and parabola
  3.    ellipses and straight lines
  4.    circles and ellipses
 Discuss Question
Answer: Option A. -> ellipses and hyperbolas
:
A
The given equation is linear DE and can be written as
dydx+x1x2y=ax1x2
Its integrating factor is ex1x2dx=e(12)log(1x2)=11x21<x<1 and ifx2>1then I.F.=1x21
ddx(y11x2)=ax(1x2)32=12a2x(1x2)32
y11x2=a1x2+Cy=a+C1x2
(ya)2=C2(1x2)(ya)2+C2x2=C2
Thus if -1 < x < 1 the given equation represents an ellipse. If x2>1then the solution is of the form (ya)2+C2x2=C2which represents a hyperbola.
Question 9. The integrating factor of the differential equation dydx=y tan xy2 sec x is  
[MP PET 1995; Pb. CET 2002]
 
  1.    tan x
  2.    secx
  3.    -sec x
  4.    cot x
 Discuss Question
Answer: Option B. -> secx
:
B
The differential equation
is dydxytanx=y2secxI.F.=etanxdx
This is Bernoulli's equation i.e. reducible to
linear equation.
Dividing the equation by y2, we get
1y2dydx1ytanx=secx............(i)
Put 1y=y1y2dydx=dYdx
Equation (i) reduces todydx=ytanx=secxdYdx+Ytanx=secx, Which is a linear equation
Hence I.F.=etanxdx=secx.
Question 10. The solution of dydx+xy=x2 is
  1.    1y=cx−xlog x
  2.    1x=cy−ylog y
  3.    1x=cx−xlog y
  4.    1y=cx−ylog x
 Discuss Question
Answer: Option B. -> 1x=cy−ylog y
:
B
dxdy+xy=x2x2dxdy+x1y=1
Put x1=t.Thenx2dxdy=dtdyx2dxdy=dtdydtdy+ty=1dtdy1yt=1
It is linear in t. Here P=1y.Q=1
I.F=e(1y)dy=elogy=1y
Solution is t(1y)=(1)1ydy=logy+ct=ylogy+cyx1cyylogy.

Latest Videos

Latest Test Papers