Sail E0 Webinar

12th Grade > Mathematics

DIFFERENTIAL EQUATIONS MCQs

Total Questions : 60 | Page 5 of 6 pages
Question 41. If xdydx=y(log ylog x+1), then the solution of the equation is
  1.    y log(xy)=cx
  2.    x log(yx)=cy
  3.    log(yx)=cx
  4.    log(xy)=cx
 Discuss Question
Answer: Option C. -> log(yx)=cx
:
C
dydx=yx(logyx+1)
Put y=vxdydx=v+xdvdx
v+xdvdx=vlogv+v1vlogvdv=1xdx1vlogvdv=1xdxlog(logv)=logx+logc
logyx=cx
Question 42. Solution to the differential equation x+x33!+x55!+.....1+x22!+x44!+.....=dxdydx+dy is 
  1.    2ye2x=C.e2x+1  
  2.    2ye2x=C.e2x−1  
  3.    ye2x=C.e2x+2  
  4.    2xe2y=C.ex−1
 Discuss Question
Answer: Option B. -> 2ye2x=C.e2x−1  
:
B
Applying C and D, we get
dydx=exex=e2x2y=e2x+C
or 2ye2x=C.e2x1.
Question 43. The family of curves passing through (0,0) and satisfying the differential equation y′′y=1 (where y=dydx and  y′′=d2ydx2) is 
  1.    y=k 
  2.    y=kx
  3.    y=k(ex+1)
  4.    y=k(ex−1)
 Discuss Question
Answer: Option D. -> y=k(ex−1)
:
D
dpdx=p(wherep=dydx)
lnp=x+cp=ex+c
dydx=kexy=kex+λ
Satisfying (0,0), So λ=k
y=k(ex1)
Question 44. The orthogonal trajectories of the family of curves an1y=xn are given by
  1.    xn+n2y= constant
  2.    ny2+x2= constant
  3.    n2x+yn= constant
  4.    n2x−yn= constant
 Discuss Question
Answer: Option B. -> ny2+x2= constant
:
B
Differentiating, we have an1dydx=nxn1an1=nxn1dxdy
Putting this value in the given equation, we havenxn1dxdyy=xn
Replacing dydx by dxdy we have ny=xdxdy
nydy+xdx=0ny2+x2=constant. Which is the required family of orthogonal trajectories.
Question 45. The solution of dydx+1=ex+y is
  1.    e−(x+y)+x+c=0
  2.    e−(x+y)−x+c=0
  3.    ex+y+x+c=0
  4.    ex+y−x+c=0
 Discuss Question
Answer: Option A. -> e−(x+y)+x+c=0
:
A
x+y=z1+dydx=dzdxdydx+1=ex+ydydx=ezdz=dxezdz=dxez=x+ce(x+y)+x+c=0.
Question 46. The degree and order of the differential equation of the family of all parabolas whose axis is x–axis, are respectively
  1.    1,2
  2.    3,2
  3.    2,3
  4.    2,1
 Discuss Question
Answer: Option A. -> 1,2
:
A
Equation of family of parabolas with x-axis as axis is y2=4a(x+α) where a,α are two arbitrary constants. So differential equation is of order 2 and degree 1.
Question 47. If y1(x) is a solution of the differential equation dydxf(x)y=0, then a solution of the differential equation dydx+f(x)y=r(x)
  1.    1y1(x)∫r(x)y1(x)dx
  2.    y1(x)∫r(x)y1(x)dx
  3.    ∫r(x)y1(x)dx
  4.    None of these
 Discuss Question
Answer: Option A. -> 1y1(x)∫r(x)y1(x)dx
:
A
dydxf(x).y=0dyy=f(x)dx
ln y=f(x)dx
y1(x)=ef(x)dxThen for given equation I.F = ef(x)dx
Hence Solution y.y1(x)=r(x).y1(x)dx
y=1y1(x)r(x).y1(x)dx
Question 48. A curve is such that the mid point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets y-axis, lies on the line y = x. If the curve passes through (1, 0), then the curve is
  1.    2y=x2−x
  2.    y=x2−x
  3.    y=x−x2
  4.    y=2(x−x2)  
 Discuss Question
Answer: Option C. -> y=x−x2
:
C
The point on y-axis is (0,yxdydx)
According to given condition,
x2=yx2dydxdydx=2yx1
Putting yx=v we get
xdvdx=v1lnyx1=ln|x|+c1yx=x (as f(1)=0).
Question 49. The orthogonal trajectories of the family of curves an1y=xn are given by
 
  1.    xn+n2y =constant  
  2.    ny2+x2 =constant  
  3.    n2x+yn=constant  
  4.    n2x−yn =constant 
 Discuss Question
Answer: Option B. -> ny2+x2 =constant  
:
B
Differentiating, we have an1dydx=nxn1an1=nxn1dxdy
Putting this value in the given equation, we have nxn1dxdyy=xn
Replacing dydxby dydy, we have ny=xdxdy
nydy+xdx=0ny2+x2 =constant. Which is the required family of orthogonal trajectories.
Question 50. The general solution of the differential equation dydx=y tan xy2sec x is
  1.    tan x = (c + sec x)y
  2.    sec y = (c + tan y )x
  3.    sec x = (c + tan x)y
  4.    None of these
 Discuss Question
Answer: Option C. -> sec x = (c + tan x)y
:
C
We have dydx=ytanxy2secx1y2dydx1ytanx=secx
Putting 1y=v1y2dydx=dvdx, we obtain
dvdx+tanx.v=secxwhich is linear
I.F=etanxdx=elogsecx=secx
The solution is
vsecx=sec2xdx+c1ysecx=tanx+c
secx=y(c+tanx)

Latest Videos

Latest Test Papers