Sail E0 Webinar

12th Grade > Mathematics

COMPLEX NUMBERS MCQs

Complex Numbers

Total Questions : 60 | Page 4 of 6 pages
Question 31. The least positive integer n which will reduce (i1i+1)nto a real number , is 
  1.    2
  2.    3
  3.    4
  4.    5
 Discuss Question
Answer: Option A. -> 2
:
A
(i1i+1×i1i1)n=(2i2)n=in
Hence, to make the real number the least positive integar is 2.
Question 32. If cosα+cosβ+cosγ=0=sinα+sinβ+sinγ then
cos2α+cos2β+cos2γ equals
 
  1.    2cos(α+β+γ)
  2.    cos2(α+β+γ)
  3.    0
  4.    1
 Discuss Question
Answer: Option C. -> 0
:
C
cosα+cosβ+cosγ=0 ......(i)
sinα+sinβ+sinγ=0 .......(ii)
Let a=cosα+isinα, b=cosβ+isinβ
c=cosγ+isinγ
a+b+c=0 .......(iii)
1a+1b+1c
=[cosα+isinα]1+[cosβ+isinβ]1+[cosγ+isinγ]1
=cosα-isinα+cosβ-isinβ+cosγ-isinγ
ab+bc+ca=0 .....(iv) [by (i) and (ii)]
Squaring both sides of equations (iii),
We get a2+b2+c2+2ab+2bc+2ca=0
or a2+b2+c2 [by (iv)]
[cosα+isinα]2+[cosβ+isinβ]2+[cosγ+isinγ]2=0
(cos2α+cos2β+cos2γ) + i(sin2α+sin2β+sin2γ)
Equating the real part to zero, we have
cos2α+cos2β+cos2γ=0
Question 33. If z = 3+5i, then z3¯z + 198 =
  1.    -3-5i
  2.     -3+5i
  3.    3+5i
  4.    3-5i
 Discuss Question
Answer: Option C. -> 3+5i
:
C
z = 3+5i ,¯z = 3-5i
z3=(3+5i)3=33+(5i)3+3.3.5i(3+5i)
= -198+10i
Hence, z3+¯z+ 198 = 10i-198+3-5i+198 = 3+5i .
Question 34. 3+i=(a+ib)(c+id),thentan1ba+tan1dc
has the value
  1.    2nπ+π3, nϵI
  2.    nπ+π6, nϵI
  3.    nπ-π3, nϵI
  4.    2nπ-π6, nϵI
 Discuss Question
Answer: Option B. -> nπ+π6, nϵI
:
B
3+i=(a+ib)(c+id)
acbd=3 and ad+bc=1
Now tan1(ba)+tan1(dc)
= tan1(ab+dc1ba.dc)= tan1(bc+adacbd)=tan1(13)
=nπ+π6, nϵI
Question 35. If a=cosα+isinα, b=cosβ+isinβ,
c=cosγ+isinγ and bc+ca+ab=1,Then
cos(β-γ)+cos(γ-α)+cos(α-β) is equal to
 
  1.    32
  2.    -32
  3.    0
  4.    1
 Discuss Question
Answer: Option D. -> 1
:
D
bc=cosβ+isinβcosγ+isinγ×cosγisinγcosγisinγ
bc=cos(βγ)+isin(βγ).....(i)
Similarly,ca=cos(γα)+isin(γα).......(ii)
And ab=cos(αβ)+isin(αβ).......(ii)
Equating real and imaginary parts,
cos(βγ)+cos(γα)+cos(αβ)=1
Question 36. If  sinα+sinβ+sinγ=0= cosα+cosβ+cosγ,
value of  sin2α+sin2β+sin2γ
 
  1.    23
  2.    32
  3.    12
  4.    1
 Discuss Question
Answer: Option B. -> 32
:
B
cosα+cosβ+cosγ = 0............(i)
sinα+sinβ+sinγ =0...........(ii)
Let a=cosα+isinα, b=cosβ+isinβ
c=cosγ+isinγ
a+b+c=0[By (i) and (ii)]....(iii)
1a+1b+1c
=cosα-isinα+cosβ-isinβ+cosγ-isinγ
ab+bc+ca=0 ......(iv) [by (i) and (ii)]
Squaring both sides of equation (iii),
we get a2+b2+c2+2ab+2bc+2ca=0
or a2+b2+c2=0 [by (iv)]
[cosα+isinα]2 + [cosβ+isinβ]2 + [cosγ+isinγ]2 = 0
(cos2α+cos2β+cos2γ) + i(sin2α+sin2β+sin2γ)=0
Separation of real and imaginary part,
cos2α+cos2β+cos2γ=0 .........(v)
And sin2α+sin2β+sin2γ =0 .........(iv)
1-2sin2α+1-2sin2β+1-2sin2γ=0 [By eq.(v)]
Therefore, sin2α+sin2β+sin2γ= 32
Question 37. The value of i1+3+5+......+(2n+1) is
  1.    i if n is even, - i if n is odd
  2.    1 if n is even, - 1 if n is odd
  3.    1 if n is odd, i if n is even
  4.    i if n is even, - 1 if n is odd
 Discuss Question
Answer: Option C. -> 1 if n is odd, i if n is even
:
C
Let z =i[1+3+5+......+(2n+1)]
Clearly series is A.P with common difference = 2
Tn = 2n-1 And Tn+1 = 2n+1
So, number of terms in A.P. = n+1
Now, sn+1=n+12 [2.1+(n+1-1)2]
Sn+1=n+12[2+2n]=(n+1)2 i.e., i(n+1)2
Now put n = 1,2,3,4,5,........
n = 1, z =i4 = 1, n = 2, z = i5= -1 ,
n = 3, z =i8 = 1, n = 4, z = i10= -1 ,
n = 5, z =i12 = 1, .........
Question 38. The maximum distance from the origin of coordinates to the point z satisfying the equation z+1z=a is
  1.    12(2√(a2+1)+a)
  2.    12(2√(a2+2)+a)
  3.    12(2√(a2+4)+a)
  4.    None of these
 Discuss Question
Answer: Option C. -> 12(2√(a2+4)+a)
:
C
let z=r (cosθ+isinθ)
Then z+1z=a z+1z2=a2
r2+1r2+2cosθ = a2 (i)
Differentiating w.r.t θ we get
2rdrdθ-2r3drdθ-4sin2θ
Putting drdθ=0, we get θ=0,π2
r is maximum for θ = 0, π2, therefore from (i)
r2+1r22=a2r1r=ar=a+2a2+42
Question 39. The conjugate of (2+i)23+i , in the form of a+ib, is
  1.    132+i(152)
  2.    1310+i(−152)
  3.    1310+i(−910)
  4.    1310+i(910)
 Discuss Question
Answer: Option C. -> 1310+i(−910)
:
C
z = (2+i)23+i=3+4i3+i×3i3i=1310+i910
Conjugate = 1310i910.
Question 40. The value of i1+3+5+......+(2n+1) is
  1.    i if n is even, - i if n is odd
  2.    1 if n is even, - 1 if n is odd
  3.    1 if n is odd, i if n is even
  4.    i if n is even, - 1 if n is odd
 Discuss Question
Answer: Option C. -> 1 if n is odd, i if n is even
:
C
Let z =i[1+3+5+......+(2n+1)]
Clearly series is A.P with common difference = 2
Tn = 2n-1 And Tn+1 = 2n+1
So, number of terms in A.P. = n+1
Now, sn+1=n+12 [2.1+(n+1-1)2]
Sn+1=n+12[2+2n]=(n+1)2 i.e., i(n+1)2
Now put n = 1,2,3,4,5,........
n = 1, z =i4 = 1, n = 2, z = i5= -1 ,
n = 3, z =i8 = 1, n = 4, z = i10= -1 ,
n = 5, z =i12 = 1, .........

Latest Videos

Latest Test Papers