Sail E0 Webinar

12th Grade > Mathematics

LOGARITHMS MCQs

Inequalities Modulus And Logarithms (11th And 12th Grade)

Total Questions : 50 | Page 3 of 5 pages
Question 21. The set of real values of x satisfying log12(x26x+12)2 is
  1.    (−∞,2]
  2.    [2,4]
  3.    [4,+∞]
  4.    None of these
 Discuss Question
Answer: Option B. -> [2,4]
:
B
log12(x26x+12)2 ...(i)
For log to be defined, x26x+12>0
(x3)2+3>0, which is true xϵR.
From (i), x26x+12(12)2
x26x+124x26x+80(x2)(x4)02x4;xϵ[2,4].
Question 22. If log0.04(x1)log0.2(x1) then x belongs to the interval
  1.    (1,2]
  2.    (−∞,2)
  3.    [2,+∞]
  4.    None of these
 Discuss Question
Answer: Option C. -> [2,+∞]
:
C
log0.04(x1)log0.2(x1) ....(i)
For log to be defined x1>0x>1
From(i),log(0.2)2(x1)log0.2(x1)
12log0.2(x1)log0.2(x1)x1(x1)x1(1x1)01x10x11x2,xϵ[2,).
Question 23. The set of real values of x for which log0.2x+2x1 is
  1.    (−∞,−52]∪(0,+∞)
  2.    [52,+∞)
  3.    (−∞,−2)∪(0,+∞)
  4.    None of these
 Discuss Question
Answer: Option A. -> (−∞,−52]∪(0,+∞)
:
A
log0.2x+2x1 ....(i)
For log to be defined, x+2x>0x>0 or
x < -2
Now from(i), log0.2x+2xlog0.20.2
x+2x0.2 .....(ii)
Case (i) x > 0
From (ii),x+20.2x
0.8x2
x52.
Case (ii) x < -2
From(ii), x+20.2x0.8x2x52
xϵ(,52](0,).
The Set Of Real Values Of X For Which Log0.2x+2x≤1 Is
Question 24. The solution set of the inequality ||x|1<1x,2xϵR is equal to
  1.    (0,∞)
  2.    (−1,∞)
  3.    (−1,1)
  4.    (−∞,0)
 Discuss Question
Answer: Option D. -> (−∞,0)
:
D
(,0)
Here because of |x| which is equalto either x or -x we shall consider the cases x>0 or x<0
Then we will have |x - 1| = |x + 1| when x < 0
Case 1: x > 0, then |x-1|<(1-x)
or |1-x| < (1-x) i.e. |t|<t
Above is not true for any value of t.
Case 2: x<0,|x1|<1x
or |x+1|<(1x)(1)
If x+10i.ex1 and x<0
i.e. 1x<0 i.e. xϵ[1,0) then (1) reduces to
x+1=1x or 2x<0 or x<0
If x+1<0 i.e. x<1 then (1) reduce to
(x+1)<(1x) or 2<0 is true for all x<1(2)
Hence from (1) and (2) xϵ(,0)
Question 25. log5 a.logax=2, then x is equal to
  1.    125
  2.    a2
  3.    25
  4.    None of these
 Discuss Question
Answer: Option C. -> 25
:
C
log5a.logax=2log5x=2x=52=25
Question 26. If A=log2 log2 log4 256+2log22, then A is equal to
  1.    2
  2.    3
  3.    5
  4.    7
 Discuss Question
Answer: Option C. -> 5
:
C
A=log2log2log4256+2log2122
=log2log2log444+2×1(12)log22
=log2log24+4=log2log222+4
=log22+4=1+4=5
Question 27. If log10 x=y then log1000x2 is equal to
  1.    y2
  2.    2y
  3.    3y2
  4.    2y3
 Discuss Question
Answer: Option D. -> 2y3
:
D
log1000x2
=log103x2
=2log103x
=23log10x
=23y
Question 28. The least value of 2log100aloga(0.0001), a>1 is
  1.    2
  2.    3
  3.    4
  4.    None
 Discuss Question
Answer: Option C. -> 4
:
C
E=2log100aloga(100)2
=[2log100a+2loga100]
2.2[log100a.loga.100]12
=4[logaa]12=4
Question 29. If A, B, C are the angles of a triangle such that C is an obtuse angle, then
  1.    tan A.tan B
  2.    tan A.tan B>1
  3.    tan A.tan B=1
  4.    None
 Discuss Question
Answer: Option A. -> tan A.tan B
:
A
Since C is obtuse therefore A and B both are acute and A + B is also acute.
Hence tanA,tanB and tan(A+B) are all + ive
tan(A+B)=tanA+tanB1tanAtanB=+ive
Above is possible only when tanAtanB<1
Question 30.  If a, b, c are real numbers such that a + 2b + c = 4 then max. value of ab + bc + ca is
  1.    2
  2.    4
  3.    6
  4.    8
 Discuss Question
Answer: Option B. -> 4
:
B
Given (a+b)+(b+c)=4
But [(a+b)+(b+c)2]2[(a+b)(b+c)],A.MG.M.
or (42)2ab+bc+ca+b2
4b2ab or ab4b2
Max. value of ab=4(b)

Latest Videos

Latest Test Papers