Sail E0 Webinar

11th Grade > Mathematics

LIMITS CONTINUITY AND DIFFERENTIABILITY MCQs

Total Questions : 30 | Page 2 of 3 pages
Question 11.


If α is a repeated root of ax2+bx+c=0 then limxαsin(ax2+bx+c)(xα)2 is 


  1.     0
  2.     a
  3.     b
  4.     c
 Discuss Question
Answer: Option B. -> a
:
B
limxαsin(ax2+bx+c)(xα)2=limxαsina(xα)(xα)(xα)2
=limxαsina(xα)2a(xα)2×a=a
Question 12.


Let f  be a function such that f(x+y)=f(x)+f(y)  for all x  and y  and f(x)=(2x2+3x)g(x) for all x  where g(x)  is continuous and g(0)=9  then f'(0)  is equals to
 


  1.     9
  2.     3
  3.     27
  4.     6
 Discuss Question
Answer: Option C. -> 27
:
C
f(x)=limh0f(x+h)f(x)h
=limh0f(x)+f(h)f(x)h
=limh0(2h2+3h)g(h)h
=limh0(2h+3)g(h)
=3g(0)
=27
Question 13.


The value of limxx+cos xx+sin xis


  1.     -1
  2.     0
  3.     1
  4.     2
 Discuss Question
Answer: Option C. -> 1
:
C

limxx+cos xx+sin x[Puttingx=1h;as x,h 0]=limh 01h+cos(1h)1h+sin(1h)=limh 01+h cos 1h1+h cos 1h=1+01+0

1 sin 1h1 and 1 cos1h1, where h0,hcos 1h0 and hsin1h0

=1


Question 14.


limx0(1+x)13(1x)13x=


  1.     2/3
  2.     1/3
  3.     1
  4.     0
 Discuss Question
Answer: Option A. -> 2/3
:
A

limx0(1+x)13(1x)13x=limx0(1+x)13(1x)13(1+x)(1x).2=2.13


Question 15.


If limx0kx cosec x = limx0x cosec kx , then k =


  1.     1
  2.     -1
  3.    
  4.    
 Discuss Question
Answer: Option C. ->
:
C

limx0kx cosec x = limx0 x cosec kx


= k limx0xsinx =1klimx0kxsinkx =k=1k=k=± 1


Question 16.


The values of constants a and b so thatlimx(x2+1x+1axb)=12,are


  1.     a=1,b=32
  2.     a=1,b=32
  3.     a=0, b=0
  4.     a =2, b= -1
 Discuss Question
Answer: Option A. -> a=1,b=32
:
A

limx(x2+1x+1axb)=12limx(x2+1)(ax+b)(x+1)x+1=12limxx2(1a)(a+b)xb+1x+1=121a=0 and a+b=12a=1 b=32


Question 17.


If the derivative of the function f(x)=bx2+ax+4;x1ax2+b;x<1, is everywhere continuous, then


  1.     a = 2, b = 3
  2.     a = 3, b = 2
  3.     a = - 2, b = - 3
  4.     a = - 3, b = - 2
 Discuss Question
Answer: Option A. -> a = 2, b = 3
:
A
We have, f(x)={ax2+b,x<1bx2+ax+4,x1f(x)={2ax,<12bx+a,x1Since, f(x) is differentiable at x=1, therefore it is continuous at x=1 and hence,limx1f(x)=limx1+f(x)a+b=ba+4a=2and also, limx1f(x)=limx1+f(x)2a=2b+a3a=2bb=3     (a=2)Hence, a=2,b=3
Question 18.


The value of limxπ2[sin1sinx],[x] is the greatest integer function of x, is


  1.     1
  2.     π2
  3.     0
  4.     12
 Discuss Question
Answer: Option A. -> 1
:
A

limxπ2[sin1sinx]  
= limxπ2[x]
= 1  


Question 19.


The value oflimx01cos3xxsin xcosx


  1.     2/5
  2.     3/5
  3.     3/2
  4.     3/4
 Discuss Question
Answer: Option C. -> 3/2
:
C

limx01cos3xxsin xcosx=limx0(1cos x)(1+cos x+cos2x)xsin xcos x=limx02sin2(x2)2sin(x2)cos(x2).x×(1+cosx+cos2x)cos x=limx0sin(x2)2(x2)×1+cosx+cos2xcos(x2)cos x=12×3=32


Question 20.


If f(x)={x23,2<x<32x+5,3<x<4, the equation whose roots are limx3f(x) and limx3+f(x) is


  1.     x212x+36=0
  2.     x226x+66=0
  3.     x217x+66=0
  4.     x222x+121=0
 Discuss Question
Answer: Option C. -> x217x+66=0
:
C

f(x)={x23,2<x<32x+5,3<x<4
limx3f(x)=limx3(x23)=6
and limx3+f(x)=limx3+(2x+5)=11
Hence, the required equation will be
x2 - (sum of roots)x + (Products of roots) = 0


Latest Videos

Latest Test Papers