Sail E0 Webinar

Exams > Cat > Quantitaitve Aptitude

GEOMETRY SET I MCQs

Total Questions : 110 | Page 8 of 11 pages
Question 71.


Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0A1, A0A2 and A0A4 is


  1.     34
  2.     33
  3.     3
  4.     332
 Discuss Question
Answer: Option C. -> 3
:
C

(c) Each triangle is an equilateral triangle 
Let A0A1A2A3A4A5 Be A Regular Hexagon Inscribed In A Circle ...
Hence A0A1 = 1
           A0A20 = A0A21 + A1A20 - 2A0A1A1A2 cos 120
                    = 1 + 1 - 2.1.1(-12) = 3
          A0A2 = 3 = A0A4
             A0A1 × A0A2 × A0A4 = 1.3.3


Question 72.


3[sin4(3π2α)+sin4(3π+α)][sin6(π2+α)+sin6(5πα)]


  1.     0
  2.     1
  3.     3
  4.     sin 4α + sin 6α
 Discuss Question
Answer: Option B. -> 1
:
B

(b) 3[sin4(3π2α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5πα)]
=3(cos α)4+(sin α)42cos6α+sin6α
=3(cos2 α + sin2 α)2  2sin2 α cos2 α  2(cos2 α + sin2 α)3  3sin2 α cos2 α (cos2 α + sin2 α)
=36sin2 α cos2 α  2 + 6sin2 α cos2 α=32=1
Trick: Put α=0 , the value of expressions remains 1 i.e., it is independent of α


Question 73.


If α(0,π2) then x2+x+tan2 αx2+x is always greater than or equal to


  1.     2 tan α
  2.     1
  3.     2
  4.     sec2 α
 Discuss Question
Answer: Option A. -> 2 tan α
:
A

(a) x2+x+tan2 αx2+x2 tan α (A.MG.M).


Question 74.


The maximum value of cosα1.cosα2........cosαn, under the restrictions 0α1,α2,.........αn π2 and
cotα1.cotα2........cotαn = 1 is


  1.     12n/2
  2.     12n
  3.     12n
  4.     1
 Discuss Question
Answer: Option A. -> 12n/2
:
A


(a) Here (cot α1).(cot α2)....(cot αn)= 1
cosα1.cosα2........cosαn =  sinα1.sinα2........sinαn
Now, (cosα1.cosα2........cosαn)2
= (cosα1.cosα2........cosαn) (cosα1.cosα2........cosαn)
= (cosα1.cosα2........cosαn) (sinα1.sinα2........sinαn)
= 12n sin 2α1.sin 2α2........sin 2αn
But each of sin 2αi
(cosα1.cosα2........cosαn)2  12n
But each of cos αi, is positive. 
cosα1.cosα2........cosαn 12n = 12n/2.


Question 75.


If A=sin8θ+cos14θ, then for all real value of θ


  1.     A1
  2.     0<A1
  3.     1<2A3
  4.     None of these
 Discuss Question
Answer: Option B. -> 0<A1
:
B
Option B is the correct answer.
Question 76.


If θ is an acute angle and sin θ=p68p, then p must satisfy


  1.     6p<8
  2.     6p<7
  3.     3p4
  4.     4p<7
 Discuss Question
Answer: Option B. -> 6p<7
:
B

(b) θ is an acute angle so 0θ<90
0p68p<1   => 0(p6)<(8p)=>6p<7.


Question 77.


  IfA,B,C be the angle of a triangle, the cot A+cot Btan A+tan B
 


  1.     1
  2.     2
  3.     -1
  4.     -2
 Discuss Question
Answer: Option A. -> 1
:
A
Option A is the correct answer.
Question 78.


If α+β=π2 and β+α=α, then tan α equals


  1.     2(tan β+tan γ)
  2.     tan β+tan γ
  3.     tan β+2tan γ
  4.     2tan β+tan γ
 Discuss Question
Answer: Option C. -> tan β+2tan γ
:
C

(c) α+β=π2=>tan β=cot α
      tan(β+γ)=tanα=>tan α=tan β+tan γ1tan β tan γ
      =>tan α=cot α+tan γ1cot α tan γ
      =>tan αtan γ=cot α+tan γ
      =>tan α=tan β+2 tan γ


Question 79.


If asin2θ+bsinθ cosθ+c cos2θ12(a+c)12k, then k2 is equal to


  1.      b2+(ac)2
  2.     a2+(bc)2
  3.     c2+(ab)2
  4.     None of these
 Discuss Question
Answer: Option A. ->  b2+(ac)2
:
A

(a) a sin2 θ+b sin θ cos θ+c cos2 θ12(a+c)
       = 12[a cos 2 θ+b sin 2θ+c cos 2θ]
       = 12[b sin 2 θ(ac)cos 2θ]
       |b sin 2θ(ac)cos 2θ|b2+(ac)2
       12b sin 2θ(ac)cos 2θ12b2+(ac)2
       K=b2+(ac)2


Question 80.


If for all real values of x,4x2+164x296 x sin α+5<132, then α lies in the interval.


  1.     (0,π3)
  2.     (π3,2π3)
  3.     (2π3,π)
  4.     (4π3,5π3)
 Discuss Question
Answer: Option D. -> (4π3,5π3)
:
D
Option D is the correct answer.

Latest Videos

Latest Test Papers