Sail E0 Webinar

11th Grade > Mathematics

COMPLEX NUMBERS MCQs

Total Questions : 30 | Page 2 of 3 pages
Question 11.


1+7i(2i)2=


  1.     2 [cos3π4+isin3π4]
  2.     2 [cosπ4+isinπ4]
  3.      [cos3π4+isin3π4]
  4.     None of these
 Discuss Question
Answer: Option A. -> 2 [cos3π4+isin3π4]
:
A

1+7i(2i)2=(1+7i)(3+4i)(34i)(3+4i)=25+25i25= -1+i


Let z=x+iy = -1+i


rcosθ =-1 And rsinθ =1 θ=3π4 and r=2


Thus 1+7i(2i)2=2 [cos3π4+isin3π4]


Alter: 1+7i(2i)2=1+7i34i=2


And arg (1+7i(2i)2)=tan17tan1(43)


                                                                    =tan17+tan1(43)=3π4


1+7i(2i)2=2 [cos3π4+isin3π4]


Question 12.


If z = 3+5i, then z3¯z + 198 =


  1.     -3-5i
  2.      -3+5i
  3.     3+5i
  4.     3-5i
 Discuss Question
Answer: Option C. -> 3+5i
:
C

z = 3+5i , ¯z = 3-5i


⇒ z3=(3+5i)3=33+(5i)3+3.3.5i(3+5i)


              = -198+10i


Hence, z3+¯z + 198 = 10i-198+3-5i+198 =  3+5i . 


Question 13.


If z is a complex number of unit modulus and argument θ, then arg(1+z1+¯z) is equal to


  1.     θ
  2.     π2θ
  3.     θ
  4.     πθ
 Discuss Question
Answer: Option C. -> θ
:
C
Given, |z1|=1, arg z=θz=eiθ
But ¯¯¯z=1z arg(1+z1+1z)=arg(z)=θ
Question 14.


The least positive integer n which will reduce (i1i+1)nto a real number , is 


  1.     2
  2.     3
  3.     4
  4.     5
 Discuss Question
Answer: Option A. -> 2
:
A

(i1i+1×i1i1)n=(2i2)n=in  


Hence, to make the real number the least positive integar is 2.


Question 15.


If a=22i then which of the following is correct


 


  1.     a=1+i
  2.     a=1-i
  3.     1
  4.     None of these
 Discuss Question
Answer: Option A. -> a=1+i
:
A

We have a =2i=2(cosπ2+isinπ2)12=2(eiπ2)12=2eiπ4=2(12+i2i)=1+i
Trick:Check with options.


Question 16.


if z and ω be two non-zero compex numbers such that |z|=|ω| and arg(z) + arg(ω)=π, then z equals


  1.     ω
  2.     ω
  3.     ¯¯¯ω
  4.     ¯¯¯ω
 Discuss Question
Answer: Option D. -> ¯¯¯ω
:
D
Since |z|=|ω| and arg(z)=πarg(ω)
Let ω=reiθ, then ¯¯¯ω=reiθz=rei(πθ)=r eiπ.eiθ=reiθ=¯¯¯ω
Question 17.


If |z|=1 and ω=z1z+1 (where, z1), then Re (ω) is


  1.     0
  2.     1|z+1|2
  3.     1z+1.1|z+1|2
  4.     2|z+1|2
 Discuss Question
Answer: Option A. -> 0
:
A
Since, |z|=1 and ω=z1z+1z1=ωz+ωz=1+ω1ω|z|=|1+ω||1ω||1ω|=|1+ω|        [|z|=1]On squaring both sides, we get1+|ω|22Re(ω)=1+|ω|2+2Re(ω)[using |z1±z2|2=|z1|2+|z2|2±2Re(¯z1z2)]4Re(ω)=0Re(ω)=0
Question 18.


The number of complex numbers z such that |z1|=|z+1|=|zi| equals


  1.     1
  2.     2
  3.    
  4.     0
 Discuss Question
Answer: Option A. -> 1
:
A
Let z = x + iy
|z1|=|z+1|(x1)2+y2=(x+1)2+y2Re (z)=0x=0|z1|=|zi|(x1)2+y2=x2+(y1)2x=y|z+1|=|zi|(x+1)2+y2=x2+(y1)2
Only (0, 0) satisfies all conditions.
Question 19.


If arg (z) < 0, then arg (-z)-arg (z) equals 


  1.     π
  2.     π
  3.     π2
  4.     π2
 Discuss Question
Answer: Option A. -> π
:
A
arg(z1z2)=arg(z1)arg(z2) arg(z)arg(z)=arg(zz)=arg(1)=π
Question 20.


If z = x+ iy is a complex number such that |z| = Re(iz)+1, then the locus of z is 


  1.     y2=12x
  2.     x2=2y1
  3.     y2=2x1
  4.     x2=12y
 Discuss Question
Answer: Option D. -> x2=12y
:
D

z=x+iyiz=y+ix


Given, |z|=Re(iz)+1x2+y2=y+1x2+y2=y22y+1x2=12y


Latest Videos

Latest Test Papers