Sail E0 Webinar

12th Grade > Mathematics

APPLICATION OF DERIVATIVES MCQs

Total Questions : 58 | Page 3 of 6 pages
Question 21. The value of m for which the area of the triangle included  between the axes  and any tangent to the curve xm y=bm is constant is
  1.    12
  2.    1
  3.    32
  4.    2
 Discuss Question
Answer: Option B. -> 1
:
B
xmy=bm
Taking logarithm
mlogex+logey=mlogebmx+1ydydx=0dydx=myx
Equation of tangent at (x,y) is
Yy=myx(Xx)xYxy=myX+mxymyX=xY=xy(1+m)Xx(1+m)m+xx(1+m)=1
Area of triangle OAB
=12.OA.OB
The Value Of M For Which The Area Of The Triangle Included ...
=12x(1+m)m|y(1+m)|=|xy|(1+m)22|m|Form=1,=|xy|(4)2=2|xy|(xy=b)=2|b|= constant
Question 22. If  a + b +c = 0, then the equation 3ax2+2bx+c=0  has, in the interval (0, 1)
  1.    Atleast one root
  2.    Atmost one root
  3.    No root
  4.    exactly one root
 Discuss Question
Answer: Option A. -> Atleast one root
:
A
Let f(x)=anXn+an1Xn1+...+a2x2+a1x+a0
Which is a polynomial function in x of degree n. Hence f(x) is continuos and differentiable for all x.
Let <β . We given, f ()=0=f(β).
By Rolle's theorem, f' (c) = 0 for some value c,
<c<β.
Hence the equation
F(x)=nanxn1+(n1)an1xn2+...+a1=0

has atleast one root between andβ.
Hence (c) is the correct answer.
Question 23. A man of height 2m walks directly away from a lamp of height 5m, on a level road at 3 m/s. The rate at which the length of his shadow is increasing is
  1.    1m/s
  2.    2m/s
  3.    3m/s
  4.    4m/s
 Discuss Question
Answer: Option B. -> 2m/s
:
B
Let be the lamp and PQ be the man and OQ=x metre be his shadow and let MQ =y metre.
A Man Of Height 2m Walks Directly Away From A Lamp Of Height...
dydt=speed of the man
=3 m/s (given)
ΔOPQ and ΔOLM are similar
OMOQ=LMPQx+yx=52y=32xdydt=32dxdt3=32dxdtdxdt=2m/s
Question 24. If f(x)=
sin xsin asin bcos xcos acos btan xtan atan b
,where 0<a<b<π2

then the equation
f(x)=0 has in the interval (a,b)
  1.    Atleast one root
  2.    Atmost one root
  3.    No root                
  4.    exactly one root
 Discuss Question
Answer: Option A. -> Atleast one root
:
A
Here f(a)=
sinasinasinbcosacosacosbtanatanatanb
=0.
Alsof(b)=0.

Moreover, as sin x, cos x and tan x are continuos and differentiable in (a, b) for 0 < a < b < π2, therefore f(x) is also continuos and differentiable in [a, b]. Hence, by Rolle's theorem, there exists atleast one real number c in (a, b) such that f ' (c) = 0.
Hence (a) is the correct answer.
Question 25. The minimum value of the function defined by f(x) = minimum {x, x+1,2 - x } is
  1.    0
  2.    12
  3.    1
  4.    32
 Discuss Question
Answer: Option D. -> 32
:
D
f(x) = maximum{x, x + 1, 2-x}
The Minimum Value Of The Function Defined By F(x) = Minimum ...
Minimum value of function =32
Question 26. The slope of the tangent to the curve x=t2+3t8,y=2t22t5 at the point t = 2 is
  1.    76
  2.    56
  3.    67
  4.    1
 Discuss Question
Answer: Option C. -> 67
:
C
We have,
dxdt=2t+3anddydt=4t2dydx=dy/dtdx/dt=4t22t+3
Thus, slope of the tangent to the curve at the point t = 2 is
[dydx]t2=4(2)22(2)+3=67
Thus, slope of the tangent to the curve at the point t = 2 is
Hence (c) is the correct answer
Question 27. f(x) = cos (πx), x  0 increases in the interval
  1.    (12k+1, 12k)
  2.    (12k+2, 12k+1)
  3.    (12k+1, 12k+3)
  4.    (12k+1, 12k+3)
 Discuss Question
Answer: Option A. -> (12k+1, 12k)
:
A
f(x) = cos (πx)
Thus
f(x) = cos (πx)
increases in
1312
generalizing it
(12k+1,12k)
F(x) = cos (πx), x ≠ 0 Increases In The Interval
Question 28. If f (x) is differentiable in the interval [2, 5], where f (2)=15 and f (5)=12, then there exists a number c, 2 < c < 5 for which f ' (c) is equal to  
  1.    12
  2.    15
  3.    110
  4.    7
 Discuss Question
Answer: Option C. -> 110
:
C
As f (x) is differentiable in [2 , 5], therefore, it is also continuos in [2, 5]. Hence, by mean value theorem, there exists a real number c in (2, 5) such that
f(c)=f(5)f(2)52f(c)=12153=110.

Hence (c) is the correct answer.
Question 29. If the function f(x)=2x39ax2+12a2 x+1, where a > 0, attains its maximum and minimum at p and q respectively such that p2=q, then a equals
  1.    3
  2.    1
  3.    2
  4.    12
 Discuss Question
Answer: Option C. -> 2
:
C
We have, f(x)=2x39ax2+12a2x+1f(x)=6x218ax+12a2=06[x23ax+2a2]=0x23ax+2a2=0x22axax+2a2=0x(x2a)a(x2a)=0(xa)(x2a)=0x=a,x=2a
Now, f(x)=12x18a
f(a)=12a18a=6a<0f(x) will be maximum at x = a
i.e. p = a
Also, f(2a)=24a18a=6af(x)will be minimum at x = 2a
i.e.q = 2a
Given, p2=q
a2=2aa=2.
Hence (c) is the correct answer.
Question 30. The approximate value of square root of 25.2 is 
  1.    5.01
  2.    5.02
  3.    5.03
  4.    5.04
 Discuss Question
Answer: Option B. -> 5.02
:
B
Let f (x) = x
Now, f(x+δx)f(x)=f(x).δx=δx2x
We may write, 25.2 = 25 + 0.2
Taking x = 25 and δx=0.2 We have
f(25.2)f(25)=0.2225=0.02f(25.2)=f(25)+0.02=25+0.02=5.02(25.2)=5.02

Latest Videos

Latest Test Papers