Sail E0 Webinar
N is a natural number. How many values of N exist, such that N2+24N+21 has exactly three factors?
A .  0
B .  1
C .  2
D .  3
E .  >3
Answer: Option C
Solution:Option c
For N2+24N+21 to have exactly three factors, it must be square of a prime number.
Let N2+24N+21=a2 where a is a prime number.
(N+12+a)(N+12-a) = 123
Either N+12+a =123 and N+12-a = 1
Or N+12+a = 41 and N+12-a=3
In the first case N = 50 and a = 61.
In the second case N =10 and a =19
In either case N2+24N+21 is the square of a prime number. So two such values exist.

Was this answer helpful ?
Next Question

Submit Solution

Your email address will not be published. Required fields are marked *

More Questions on This Topic :

Latest Videos

Latest Test Papers