Sail E0 Webinar

Quantitative Aptitude > Interest

COMPOUND INTEREST MCQs

Total Questions : 262 | Page 24 of 27 pages
Question 231. Under the Rural Housing Scheme, the Delhi Development Authority (DDA) allotted a house to Kamal Raj for Rs. 126100. This payment is to be made in three equal annual instalments. If the money is reckoned at 5% per annum compound interest, then how much is to be paid by Kamal Raj in each instalment ?
  1.    Rs. 45205
  2.    Rs. 46305
  3.    Rs. 47405
  4.    Rs. 48505
 Discuss Question
Answer: Option B. -> Rs. 46305
Let the value of each instalment be Rs. x
Then, (P.W. of Rs. x due 1 year hence) + (P.W. of Rs. x due 2 year hence) + (P.W. of Rs. x due 3 year hence) = 126100
$$\eqalign{
& \Rightarrow \frac{x}{{\left( {1 + \frac{5}{{100}}} \right)}} + \frac{x}{{{{\left( {1 + \frac{5}{{100}}} \right)}^2}}} + \frac{x}{{{{\left( {1 + \frac{5}{{100}}} \right)}^3}}} = 126100 \cr
& \Rightarrow \frac{{20x}}{{21}} + \frac{{400x}}{{441}} + \frac{{8000x}}{{9261}} = 126100 \cr
& \Rightarrow \frac{{8820x + 8400x + 8000x}}{{9261}} = 126100 \cr
& \Rightarrow \frac{{25220x}}{{9261}} = 126100 \cr
& \Rightarrow x = \left( {\frac{{126100 \times 9261}}{{25220}}} \right) \cr
& \Rightarrow x = 46305 \cr} $$
Question 232. The compound interest on a certain sum of money for 2 years at 5% per annum is Rs 410. The simple interest on the same sum at the same rate and for the same time is = ?
  1.    Rs. 400
  2.    Rs. 300
  3.    Rs. 350
  4.    Rs. 405
 Discuss Question
Answer: Option A. -> Rs. 400
$$\eqalign{
& {\text{Rate of interest 5}}\% \cr
& = \frac{1}{{20}} \cr
& {\text{Let principal}} \cr
& {\text{ = }}{\left( {20} \right)^2}{\text{ = 400 units}} \cr
& \Rightarrow {\text{ Total compound interest }} \cr
& {\text{41 Units }} \to {\text{Rs. 410 }} \cr
& {\text{1 Units }} \to {\text{Rs. 10 }} \cr
& {\text{400 Units }} \to {\text{Rs. 400 }} \cr
& {\text{Total simple interest}} \cr
& {\text{ = Rs. 400}} \cr} $$
Alternate
Total compound interest for 2 years at 5% p.a.
$$\eqalign{
& {\text{ = 5 + 5 + }}\frac{{5 \times 5}}{{100}} = 10.25\% \cr
& {\text{Total simple interest}} \cr
& = 10\% \cr
& \Rightarrow 10.25\% \to 410 \cr
& \Rightarrow 10\% \to 400 \cr
& {\text{Simple interest}} \cr
& {\text{ = Rs}}{\text{. 400}} \cr} $$
Question 233. The compound interest on a certain sum of money for 2 years at 5% is Rs. 328, then the sum is = ?
  1.    Rs. 3000
  2.    Rs. 3600
  3.    Rs. 3200
  4.    Rs. 3400
 Discuss Question
Answer: Option C. -> Rs. 3200
For a first result cross check with option (Go with option (C) and check it.)
Principal is Rs. 3200
3200 of 5% for 1st year = 160
then, principal = 3200 + 160 = 3360
3360 of 5% for 2nd year = 168
∴ Interest = 160 + 168 = 328
Question 234. A sum of money lent out at compound interest increases in value by 50% in 5 years. A person wants to lend three different sums x, y and z for 10, 15 and 20 years respectively at the above rate in such a way that he gets back equal sums at the end of their respective periods. The ratio x : y : z is = ?
  1.    6 : 9 : 4
  2.    9 : 4 : 6
  3.    9 : 6 : 4
  4.    6 : 4 : 9
 Discuss Question
Answer: Option C. -> 9 : 6 : 4
$$\eqalign{
& P{\left( {1 + \frac{R}{{100}}} \right)^5} = 150\% \,{\text{of }}P = \frac{3}{2}P \cr
& \Rightarrow {\left( {1 + \frac{R}{{100}}} \right)^5} = \frac{3}{2} \cr} $$
  $$x{\left( {1 + \frac{R}{{100}}} \right)^{10}} = y{\left( {1 + \frac{R}{{100}}} \right)^{15}} = $$       $$z{\left( {1 + \frac{R}{{100}}} \right)^{20}}$$
  $$ \Rightarrow x{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^2} = $$      $$y{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^3} = $$     $$z{\left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^5}} \right\}^4}$$
$$\eqalign{
& \Rightarrow x \times {\left( {\frac{3}{2}} \right)^2} = y \times {\left( {\frac{3}{2}} \right)^3} = z \times {\left( {\frac{3}{2}} \right)^4} \cr
& \Rightarrow \frac{{9x}}{4} = \frac{{27y}}{8} = \frac{{81z}}{{16}} = k({\text{say}}) \cr
& \Rightarrow x = \frac{{4k}}{9},y = \frac{{8k}}{{27}},z = \frac{{16k}}{{81}} \cr
& \Rightarrow x:y:z = \frac{{4k}}{9}:\frac{{8k}}{{27}}:\frac{{16k}}{{81}} \cr
& \Rightarrow x:y:z = 36:24:16 \cr
& \Rightarrow x:y:z = 9:6:4 \cr} $$
Question 235. On a certain sum of money, the simple interest for 2 years is Rs 350 at the rate of 4% per annum. If it was invested at compound interest at the same rate for the same duration as before, how much more interest would be earned?
  1.    Rs. 3.50
  2.    Rs. 7
  3.    Rs. 14
  4.    Rs. 35
 Discuss Question
Answer: Option B. -> Rs. 7
Simple Interest (I) = $$\frac{{PTR}}{{100}}$$
350 = $$\frac{{P \times 2 \times 4}}{{100}}$$
P = 4375
C.I = 175 + 175 + 7 = 357
Difference = 357 - 350 = Rs. 7
Question 236. The difference between CI and SI for 3 years Rs. 992. If rate of interest is 10%. Find the Principal ?
  1.    Rs. 22000
  2.    Rs. 30000
  3.    Rs. 28000
  4.    Rs. 32000
 Discuss Question
Answer: Option D. -> Rs. 32000
$$\eqalign{
& {\text{Rate}} = 10\% ,\, \cr
& {\text{Let}}\,{\text{Principal}} = P \cr
& {\text{S}}{\text{.I}}{\text{.}} = \frac{{P \times 10 \times 3}}{{100}} = \frac{{3P}}{{10}} \cr
& {\text{C}}{\text{.I}}{\text{.}} = P\left\{ {{{\left( {1 + \frac{1}{{10}}} \right)}^3} - 1} \right\} \cr
& \Rightarrow {\text{C}}{\text{.I}}{\text{.}}\,\, - \,\,{\text{S}}{\text{.I}}{\text{.}} = 992 \cr
& \Rightarrow P\left\{ {{{\left( {1 + \frac{1}{{10}}} \right)}^3} - 1} \right\} - \frac{{3P}}{{10}} = 992 \cr
& \Rightarrow P\left\{ {{{\left( {\frac{{11}}{{10}}} \right)}^3} - 1 - \frac{3}{{10}}} \right\} = 992 \cr
& \Rightarrow P\left\{ {\frac{{\left( {1331 - 1000 - 300} \right)}}{{1000}}} \right\} = 992 \cr
& \Rightarrow P\left( {\frac{{31}}{{1000}}} \right) = 992 \cr
& \Rightarrow P = 32000 \cr} $$
Alternate:
Rate = 10% = $$\frac{1}{{10}}$$
Let principal ⇒ (10)3 = 1000
Interest 1st year → 100
Interest 2nd year → 100 + 10
Interest 3rd year = 100 + 10 + 10 + 1
C.I – S.I = 331 – 300 = 31
31 → 992
1 → 32
P → 32000
Question 237. If the difference between the compound interest and simple interest on a certain sum at the rate of 5% per annum for 2 years is Rs. 20, then the sum is = ?
  1.    Rs. 2000
  2.    Rs. 4000
  3.    Rs. 6000
  4.    Rs. 8000
 Discuss Question
Answer: Option D. -> Rs. 8000
Let the sum be = 400x
Simple Interest = $$\frac{{PTR}}{{100}}$$
S.I = $$\frac{{400x \times 2 \times 5}}{{100}}$$ = 40x
for Compond Interest 5% = $$\frac{{1}}{20}$$
C.I = 20x + 20x + x = 41x
Difference = 41x - 40x = 20
i.e. x = 20
∴ Sum is = 400 × 20 = 8000
Question 238. The compound interest on a certain sum of money for 2 years at 10% per annum is Rs. 525.The simple interest on the same sum of money for double the time at half the rate percent per annum is ?
  1.    Rs. 1000
  2.    Rs. 500
  3.    Rs. 200
  4.    Rs. 800
 Discuss Question
Answer: Option B. -> Rs. 500
Let the sum of money be rs. P
Then,
$$\eqalign{
& \Rightarrow \left[ {P{{\left( {1 + \frac{R}{{100}}} \right)}^t} - P} \right] = {\text{C}}{\text{.I}}{\text{.}} \cr
& \Rightarrow \left[ {P{{\left( {1 + \frac{{10}}{{100}}} \right)}^2} - P} \right] = 525 \cr
& \Rightarrow P{\left( {\frac{{11}}{{10}}} \right)^2} - 1 = 525 \cr
& \Rightarrow P\left( {\frac{{121}}{{100}} - 1} \right) = 525 \cr
& \Rightarrow P\left( {\frac{{21}}{{100}}} \right) = 525 \cr
& \Rightarrow P = \frac{{525 \times 100}}{{21}} \cr
& \Rightarrow P = {\text{Rs}}{\text{.}}\,2500 \cr
& \therefore {\text{ Sum of money}} \cr
& {\text{ = Rs}}{\text{. 2500}} \cr} $$
Simple interest on the same sum Rs. 2500 for 4 (double the time) years at 5% (half the rate of percent per annum) is
So,
$$\eqalign{
& {\text{S}}{\text{.I}}{\text{. = Rs}}{\text{.}}\left( {\frac{{2500 \times 5 \times 4}}{{100}}} \right) \cr
& \,\,\,\,\,\,\,\,\,{\text{ = Rs}}{\text{. 500}} \cr} $$
Question 239. The compound interest on a sum of Rs 5000 at 8% per annum for 9 months when interest is compounded quarterly is = ?
  1.    Rs. 300
  2.    Rs. 300.12
  3.    Rs. 306.04
  4.    Rs. 308
 Discuss Question
Answer: Option C. -> Rs. 306.04
In one year there are 4 quarterly months.
∴ 9 month = 3 quarter
New Rate of Interest = $$\frac{8}{4}$$   = 2%
i.e 2% = $$\frac{1}{50}$$
Total CI = (100 + 100 + 100) + (2 + 2 +2) + 0.04
             = Rs.306.04
Question 240.  A bank offers 5% compound interest calculated on half-yearly basis. A customer deposits Rs. 1600 each on 1st January and 1st July of a year. At the end of the year, the amount he would have gained by way of interest is:
  1.    Rs. 120
  2.    Rs. 121
  3.    Rs. 122
  4.    Rs. 123
 Discuss Question
Answer: Option B. -> Rs. 121

Latest Videos

Latest Test Papers