Sail E0 Webinar
Question

Two dice are rolled together. What is the probability of getting two numbers whose product is even?
Options:
A .  $MF#%\dfrac{17}{36}$MF#%
B .  $MF#%\dfrac{1}{3}$MF#%
C .  $MF#%\dfrac{3}{4}$MF#%
D .  $MF#%\dfrac{11}{25}$MF#%
Answer: Option C

Answer : Option C

Explanation :

-----------------------------------------------------------------------------------------
Solution 1
-----------------------------------------------------------------------------------------
Total number of outcomes possible when a die is rolled = 6 (∵ any one face out of the 6 faces)
Hence, Total number of outcomes possible when two dice are rolled, n(S) = 6 × 6 = 36
Let E = the event of getting two numbers whose product is even
= {(1,2), (1,4), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,2), (3,4), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,2),(5,4), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
Hence, n(E) = 27

$MF#%\text{P(E) = }\dfrac{\text{n(E)}}{\text{n(S)}} = \dfrac{27}{36} = \dfrac{3}{4}$MF#%

----------------------------------------------------------------------------------------- Solution 2
----------------------------------------------------------------------------------------- This problem can easily be solved if we know the following property of numbers

)
$MF#%= \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4}$MF#%

$MF#%\text{P(Even product) = 1 - P(Odd product) = }1 - \dfrac{1}{4} = \dfrac{3}{4}$MF#%


Was this answer helpful ?
Next Question

Submit Solution

Your email address will not be published. Required fields are marked *

Latest Videos

Latest Test Papers