Two dice are rolled together. What is the probability of getting two numbers whose product is even?
Answer : Option C
Explanation :
-----------------------------------------------------------------------------------------
Solution 1
-----------------------------------------------------------------------------------------
Total number of outcomes possible when a die is rolled = 6 (∵ any one face out of the 6 faces)
Hence, Total number of outcomes possible when two dice are rolled, n(S) = 6 × 6 = 36
Let E = the event of getting two numbers whose product is even
= {(1,2), (1,4), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,2), (3,4), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,2),(5,4), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
Hence, n(E) = 27
$MF#%\text{P(E) = }\dfrac{\text{n(E)}}{\text{n(S)}} = \dfrac{27}{36} = \dfrac{3}{4}$MF#%
----------------------------------------------------------------------------------------- Solution 2----------------------------------------------------------------------------------------- This problem can easily be solved if we know the following property of numbers
)
$MF#%= \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4}$MF#%
$MF#%\text{P(Even product) = 1 - P(Odd product) = }1 - \dfrac{1}{4} = \dfrac{3}{4}$MF#%
Was this answer helpful ?
Submit Solution