Sail E0 Webinar
Question


Let X be the set of first 100 natural numbers. Sets S1 and S2 are subsets of X such that each of them has more than zero elements and no common element. If the maximum number of elements in S1 = x1, in S2 = y1 and minimum no. of elements in S1 = x2, in S2 = y2 then:
Suppose the union of sets S1 and S2 is X and S1, S2 have the same number of elements. If elements from S1 and S2 are chosen randomly, it was found that by exchanging two elements of S1 with two elements of S2, every element of S1 was greater than that of S2. Find the no. of sets S1 that can be formed.


Options:
A .   50C2
B .   50C49
C .   100
D .   50C48×50C2
E .   Cannot be determined.
Answer: Option D
:
D

In set S1, 48 elements can be selected randomly in 50C48 ways (from 51 to 100) and the other two elements in S2 can be selected in 50C2 ways (from 1 to 50). So, set S1 can be formed in 50C48×50C2 ways. Hence, option (d).



Was this answer helpful ?
Next Question

Submit Solution

Your email address will not be published. Required fields are marked *

More Questions on This Topic :


Latest Videos

Latest Test Papers