Question
Let A, B , and C be three independent events with P(A)=13,P(B)=12, and P(C)=14. . The probability of exactly 2 of these events occurring, is equal to
Answer: Option A
:
A
P(exactly two of A, B and C) = P(AB) + P(BC) + P(CA) – 3 P(ABC)
Since A, B ,C are independent events,
Required probability = P(A)P(B) + P(B)P(C) +P(C)P(A) – 3 P(A)P(B)P(C)
=13×12+12×14+14×13−313×12×14=14.
Was this answer helpful ?
:
A
P(exactly two of A, B and C) = P(AB) + P(BC) + P(CA) – 3 P(ABC)
Since A, B ,C are independent events,
Required probability = P(A)P(B) + P(B)P(C) +P(C)P(A) – 3 P(A)P(B)P(C)
=13×12+12×14+14×13−313×12×14=14.
Was this answer helpful ?
Submit Solution