Sail E0 Webinar

Quantitative Aptitude > Interest

SIMPLE INTEREST MCQs

Total Questions : 234 | Page 21 of 24 pages
Question 201. A person invests Rs. 12000 as fixed deposit at a bank at the rate of 10% per annum simple interest. But due to some pressing needs he has to withdraw the entire money after three years, for which the bank allowed him a lower rate of interest. If he gets Rs. 3320 less than what he would have got at the end of 5 years, the rate of interest allowed by the bank is = ?
  1.    $${\text{7}}\frac{5}{9}$$ %
  2.    $${\text{7}}\frac{4}{9}$$ %
  3.    $${\text{7}}\frac{8}{9}$$ %
  4.    $${\text{8}}\frac{7}{9}$$ %
 Discuss Question
Answer: Option B. -> $${\text{7}}\frac{4}{9}$$ %
Principal = Rs. 12000
Rate % = 10%
Interest paid by the person in 5 years
$$\eqalign{
& = \frac{{12000 \times 10 \times 5}}{{100}} \cr
& = {\text{Rs}}{\text{. 6000}} \cr} $$
Interest received by the person after 3 years
$$\eqalign{
& = {\text{Rs}}{\text{. }}\left( {6000 - 3320} \right) \cr
& = {\text{Rs}}{\text{. 2680}} \cr
& {\text{By using formula,}} \cr
& {\text{Rate}}\% \cr
& {\text{ = }}\frac{{2680}}{{12000}} \times \frac{{100}}{3} \cr
& = \frac{{67}}{9} \cr
& = 7\frac{4}{9}\% \cr
& {\text{Hence required rate}}\% \cr
& {\text{ = 7}}\frac{4}{9}\% \cr} $$
Question 202. Simple interest on a certain sum at a certain annual rate of interest is $$\frac{1}{9}$$ of the sum. If the numbers representing rate percent and time in years be equal, then the rate of interest is -
  1.    $$3\frac{1}{3}$$ %
  2.    5%
  3.    $$6\frac{2}{3}$$ %
  4.    10%
 Discuss Question
Answer: Option A. -> $$3\frac{1}{3}$$ %
$$\eqalign{
& {\text{Let sum}} = x \cr
& {\text{Then,}} \cr
& {\text{S}}{\text{.I}}{\text{.}} = \frac{x}{9}. \cr
& {\text{Let rate}} = {\text{R}}\% \,{\text{and}} \cr
& {\text{time}} = {\text{R}}\,{\text{years}}{\text{.}} \cr
& \therefore \left( {\frac{{x \times {\text{R}} \times {\text{R}}}}{{100}}} \right) = \frac{x}{9} \cr
& \Rightarrow {{\text{R}}^2} = \frac{{100}}{9} \cr
& \Rightarrow {\text{R}} = \frac{{10}}{3} = 3\frac{1}{3} \cr
& {\text{Hence, rate}} = 3\frac{1}{3}\% \cr} $$
Question 203. A person deposits Rs. 500 in 4 years and Rs. 600 for 3 years at the same rate of simple interest in a bank. Altogether he received Rs. 190 as interest. The rate of simple interest per annum was = ?
  1.    4%
  2.    5%
  3.    2%
  4.    3%
 Discuss Question
Answer: Option B. -> 5%
Let rate of interest = R%
According to the question,
$$\eqalign{
& \frac{{500 \times 4 \times {\text{R}}}}{{100}} + \frac{{600 \times 3 \times {\text{R}}}}{{100}} = 190 \cr
& \Rightarrow 20{\text{R + 18R = 190}} \cr
& \Rightarrow 38{\text{R = 190}} \cr
& \Rightarrow {\text{R = 5% }} \cr} $$
Hence required rate % = 5%
Alternate
Note : In such type of questions to save your valuable time follow the given below method.
Let rate of interest = 1%
$$\eqalign{
& {\text{Case (I): Interest (}}{{\text{I}}_1}{\text{)}} \cr
& {\text{ = }}\frac{{500 \times 4 \times 1}}{{100}} \cr
& = 20 \cr
& {\text{Case (II): Interest (}}{{\text{I}}_2}{\text{)}} \cr
& {\text{ = }}\frac{{{\text{600}} \times 3 \times 1}}{{100}} \cr
& = 18 \cr} $$
According to the question,
Interest    
    Rate %
  38  
  1  
  ↓×5  
  ↓×5  
  190  
  5%  
Hence required rate % = 5%
Question 204. A certain scheme of investment in simple interest declares that it triples the investment in 8 years. If you want to quadruple the money through that scheme for how many years you have to invest for = ?
  1.    11 years 6 months
  2.    10 years 8 months
  3.    10 years
  4.    12 years
 Discuss Question
Answer: Option D. -> 12 years
$$\eqalign{
& {\text{P}} + \frac{{P \times {\text{r}} \times {\text{t}}}}{{100}} = 3{\text{P}} \cr
& \Rightarrow 1 + \frac{{rt}}{{100}} = 3 \cr
& \Rightarrow \frac{{{\text{rt}}}}{{100}} = 2 \cr
& \Rightarrow {\text{r}} = \frac{{2 \times 100}}{8} = 25\% \cr
& {\text{so, }}\,\left( {1 + \frac{{{\text{rt}}}}{{100}}} \right) = 4 \cr
& \Rightarrow \frac{{{\text{rt}}}}{{100}} = 3 \cr
& \Rightarrow {\text{t}} = \frac{{3 \times 100}}{{25}} \cr
& \Rightarrow {\text{t}} = 12\,{\text{years}} \cr} $$
Question 205. If the simple interest for 6 years be equal to 30% of the principal, it will be equal to the principal after
  1.    10 years
  2.    20 years
  3.    22 years
  4.    30 years
 Discuss Question
Answer: Option B. -> 20 years
$$\eqalign{
& {\text{Let sum}} = {\text{Rs}}{\text{. }}x \cr
& {\text{Then,}} \cr
& {\text{S}}{\text{.I}}{\text{.}} = 30\% \,{\text{of}}\,{\text{Rs}}{\text{.}}\,x \cr
& \,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{.}}\frac{{3x}}{{10}} \cr
& {\text{Time}} = 6\,{\text{years}}{\text{.}} \cr
& \therefore {\text{Rate}} = \left( {\frac{{100 \times 3x}}{{10 \times x \times 6}}} \right)\% \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 5\% \cr
& {\text{Now, sum}} = {\text{Rs}}{\text{. }}x \cr
& {\text{S}}{\text{.I}}{\text{.}} = {\text{Rs}}{\text{. }}x \cr
& {\text{Rate}} = 5\% \cr
& \therefore {\text{Time}} = \left( {\frac{{100 \times x}}{{x \times 5}}} \right){\text{years}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 20\,{\text{years}} \cr} $$
Question 206. A certain sum doubles in 7 years at simple interest. The same sum under the same interest rate will become 4 times in how many years = ?
  1.    14 years
  2.    28 years
  3.    21 years
  4.    10 years
 Discuss Question
Answer: Option C. -> 21 years
$$\eqalign{
& \frac{{\left( {n - 1} \right)}}{{{t_1}}} = \frac{{\left( {m - 1} \right)}}{{{t_2}}} \cr
& \frac{1}{7} = \frac{3}{{{t_2}}} \cr
& {t_2} = 21{\text{ years}} \cr} $$
Question 207. A person invests money in three different schemes for 6 years, 10 years and 12 years at 10 percent, 12 percent and 15 percent simple interest respectively. At the completion of each scheme, he gets the same interest. The ratio of his investment is
  1.    2 : 3 : 4
  2.    4 : 3 : 2
  3.    3 : 4 : 6
  4.    6 : 3 : 2
 Discuss Question
Answer: Option D. -> 6 : 3 : 2
Let the three amounts be Rs. x, Rs. y and Rs. z,
Then,
$$\eqalign{
& \frac{{x \times 10 \times 6}}{{100}} = \frac{{y \times 12 \times 10}}{{100}} = \frac{{z \times 15 \times 12}}{{100}} \cr
& \Rightarrow 60x = 120y = 180z \cr
& \Rightarrow x = 2y = 3z = k(say) \cr
& \Rightarrow x = k,y = \frac{k}{2},z = \frac{k}{3} \cr
& \Rightarrow x:y:z = k:\frac{k}{2}:\frac{k}{3} \cr
& \Rightarrow x:y:z = 1:\frac{1}{2}:\frac{1}{3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6:3:2 \cr} $$
Question 208. On a certain sum the simple interest for $$12\frac{1}{2}$$ year is $$\frac{3}{4}$$ of the sum. Then the rate of interest is = ?
  1.    5% per year
  2.    6% per year
  3.    7% per year
  4.    8% per year
 Discuss Question
Answer: Option B. -> 6% per year
$$\eqalign{
& {\text{Let sum = }}x \cr
& {\text{Interest = }}\frac{3}{4}x{\text{ }} \cr
& {\text{Interest = }}\frac{{{\text{PTR }}}}{{100}} \cr
& \Rightarrow \frac{3}{4}x = \frac{{x \times {\text{R}} \times 12.5}}{{100}} \cr
& {\text{R = 6}}\% \cr} $$
Question 209. If the simple interest on Rs. 1 for 1 month is 1 paisa, then the rate percent per annum will be = ?
  1.    10%
  2.    8%
  3.    12%
  4.    6%
 Discuss Question
Answer: Option C. -> 12%
$$\eqalign{
& {\text{t}} = {\text{1 month = }}\frac{1}{{12}}{\text{year}} \cr
& {\text{SI = 1 paisa = Rs}}{\text{. }}\frac{1}{{100}} \cr
& {\text{r}}\% = \frac{{{\text{SI}} \times {\text{100}}}}{{{\text{P}} \times {\text{T}}}} = \frac{{1 \times 100 \times 12}}{{100 \times 1 \times 1}} \cr
& {\text{r}}\% = 12\% \cr} $$
Question 210. A man invested $$\frac{{\text{1}}}{{\text{3}}}$$ of his capital at 7%; $$\frac{{\text{1}}}{{\text{4}}}$$ at 8% and the remainder at 10%. If his annual income is Rs. 561, the capital is -
  1.    Rs. 5400
  2.    Rs. 6000
  3.    Rs. 6600
  4.    Rs. 7200
 Discuss Question
Answer: Option C. -> Rs. 6600
Let total capital be Rs. x
Then,
  $$ \Rightarrow \left( {\frac{x}{3} \times \frac{7}{{100}} \times 1} \right) + \left( {\frac{x}{4} \times \frac{8}{{100}} \times 1} \right) + $$       $$\left( {\frac{{5x}}{{12}} \times \frac{{10}}{{100}} \times 1} \right)$$    $$ = 561$$
$$\eqalign{
& \Rightarrow \frac{{7x}}{{300}} + \frac{x}{{50}} + \frac{x}{{24}} = 561 \cr
& \Rightarrow 51x = \left( {561 \times 600} \right) \cr
& \Rightarrow x = \left( {\frac{{561 \times 600}}{{51}}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6600 \cr} $$

Latest Videos

Latest Test Papers