Sail E0 Webinar

Quantitative Aptitude > Interest

SIMPLE INTEREST MCQs

Total Questions : 234 | Page 17 of 24 pages
Question 161. Arun borrowed a sum of money from Jayant at the rate of 8% per annum simple interest for the first four years, 10% per annum for the next 6 years and 12% per annum for the period beyond 10 years. If he pays a total of Rs. 12160 as interest only at the end of 15 years, how much money did he borrow?
  1.    Rs. 8000
  2.    Rs. 9000
  3.    Rs. 10000
  4.    Rs. 12000
 Discuss Question
Answer: Option A. -> Rs. 8000
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x \cr
& {\text{Then,}} \cr} $$
$$ {\frac{{x \times 8 \times 4}}{{100}}} + {\frac{{x \times 10 \times 6}}{{100}}} \,+ $$     $$ {\frac{{x \times 12 \times 5}}{{100}}} $$   $$ = 12160$$
$$\eqalign{
& \Rightarrow 32x + 60x + 60x = 1216000 \cr
& \Rightarrow 152x = 1216000 \cr
& \Rightarrow x = 8000 \cr} $$
Question 162. If x, y, z are three sums of money such that y is the simple interest on x, z is the simple interest on y for the same time and at the same rate of interest, then we have.
  1.    x2 = yz
  2.    y2 = xz
  3.    z2 = xy
  4.    xyz = 1
 Discuss Question
Answer: Option B. -> y2 = xz
Let time be T years and rate be R% p.a.
$$\eqalign{
& {\text{Then, }}y{\text{ is the S}}{\text{.I}}{\text{. on x}} \cr
& \Rightarrow \frac{{x{\text{RT}}}}{{100}} = y......(i) \cr
& {\text{And, }}z{\text{ is the S}}{\text{.I}}{\text{. on y}} \cr
& \Rightarrow \frac{{y{\text{RT}}}}{{100}} = z \cr
& \Rightarrow y = \frac{{100z}}{{RT}}......(ii) \cr
& {\text{From (i) and (ii) we have:}} \cr
& \frac{{x{\text{RT}}}}{{100}} = \frac{{100z}}{{{\text{RT}}}} \cr
& \Rightarrow \frac{{x{{\text{R}}^2}{{\text{T}}^2}}}{{{{\left( {100} \right)}^2}}} = z \cr
& \Rightarrow \frac{{{y^2}}}{x} = z \cr
& \Rightarrow {y^2}= xz \cr }$$
Question 163. With a given rate of simple interest, the ratio of principal and amount for a certain period of time is 4 : 5. After 3 years with the same rate of interest, the ratio of the principal and amount becomes 5 : 7. The rate of interest is = ?
  1.    4%
  2.    6%
  3.    5%
  4.    7%
 Discuss Question
Answer: Option C. -> 5%
$$\eqalign{
& \frac{{{\text{Principal}}}}{{{\text{Amount}}}} = \frac{{4 \times 5}}{{5 \times 5}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{20}}{{25}} \cr
& {\text{After three year}} \cr
& \frac{{\text{P}}}{{\text{A}}} = \frac{{5 \times 4}}{{7 \times 4}} \cr
& \,\,\,\,\,\,\,\, = \frac{{20}}{{28}} \cr
& {\text{In three year S}}{\text{.I}}{\text{.}} \cr
& = 28x - 25x \cr
& = 3x \cr
& \text{So, the required interest will be} \cr
& 3x = \frac{{20x \times {\text{R}} \times 3}}{{100}} \cr
& {\text{R}} = 5\% \cr} $$
Question 164. Kruti took a loan at simple interest rate of 6 p.c.p.a. in the first year and it increased by 1.5 p.c.p.a. every year. If she pays Rs. 8190 as interest at the end of 3 years, what was her loan amount ?
  1.    Rs. 35400
  2.    Rs. 36000
  3.    Rs. 36800
  4.    Cannot be determined
  5.    None of these
 Discuss Question
Answer: Option E. -> None of these
Let the loan amount be Rs. x
$$\eqalign{
& {\text{Then,}} \cr
& \Rightarrow \frac{{6x}}{{100}} + \frac{{7.5x}}{{100}} + \frac{{9x}}{{100}} = 8190 \cr
& \Rightarrow 22.5x = 819000 \cr
& \Rightarrow x = 36400 \cr} $$
Question 165. What equal installment of annual payment will discharge a debt which is due as Rs. 848 at the end of 4 years at 4% per annum simple interest ?
  1.    Rs. 212
  2.    Rs. 200
  3.    Rs. 250
  4.    Rs. 225
 Discuss Question
Answer: Option B. -> Rs. 200
Note : In such type of questions to save your valuable time follow the given below method.
$$\eqalign{
& {\text{Value of installment}} \cr
& {\text{ = }}\frac{{{\text{Principal}} \times {\text{100}}}}{{{\text{Time}} \times {\text{100}} + \left( {{{\text{t}}_{{\text{n - 1}}}} + {{\text{t}}_{{\text{n - 2}}}}...1} \right) \times {\text{Rate}}\% }} \cr
& {\text{Principal = Rs}}{\text{. 848}} \cr
& {\text{Rate = 4}}\% \cr
& {\text{Time = 4 year}} \cr
& {\text{Installment}} \cr
& {\text{ = }}\frac{{848 \times 100}}{{4 \times 100 + \left( {3 + 2 + 1} \right) \times 4}}{\text{ }} \cr
& {\text{ = }}\frac{{848 \times 100}}{{\left( {400 + 24} \right)}}{\text{ }} \cr
& = \frac{{848 \times 100}}{{424}} \cr
& {\text{ = Rs}}{\text{. 200}} \cr} $$
Question 166. A sum of money at simple interest amounts to Rs. 815 in 3 years and to Rs. 854 in 4 years. The sum is
  1.    Rs. 650
  2.    Rs. 690
  3.    Rs. 698
  4.    Rs. 700
 Discuss Question
Answer: Option C. -> Rs. 698
$$\eqalign{
& {\text{S}}{\text{.I}}{\text{. for 1 year}} \cr
& = {\text{Rs}}.\left( {854 - 815} \right) \cr
& = {\text{Rs}}.39 \cr
& {\text{S}}{\text{.I}}{\text{. for 3 years}} \cr
& = {\text{Rs}}{\text{.}}\left( {39 \times 3} \right) \cr
& = {\text{Rs}}{\text{. }}117 \cr
& \therefore \text{Principal} \cr
& = {\text{Rs}}{\text{.}}\left( {854 - 117} \right) \cr
& = {\text{Rs}}{\text{. }}698 \cr} $$
Question 167. If Rs. 12000 is divided into two parts such that the simple interest on the first part for 3 years at 12% per annum is equal to the simple interest on the second part for $$4\frac{1}{2}$$ years at 16% per annum, the greater part is = ?
  1.    Rs. 8000
  2.    Rs. 6000
  3.    Rs. 7000
  4.    Rs. 7500
 Discuss Question
Answer: Option A. -> Rs. 8000
$$\eqalign{
& {\text{Let the first part = Rs}}{\text{. }}x \cr
& \therefore {\text{Hence second part}} \cr
& {\text{ = Rs}}{\text{. }}\left( {12000 - x} \right) \cr
& {\text{According to the question,}} \cr
& \Rightarrow \frac{{x \times 12 \times 3}}{{100}} = \frac{{\left( {12000 - x} \right) \times 9 \times 16}}{{2 \times 100}} \cr
& \Rightarrow 36x = 72\left( {12000 - x} \right) \cr
& \Rightarrow x = 24000 - 2x \cr
& \Rightarrow 3x = 24000 \cr
& \Rightarrow x = {\text{Rs}}{\text{. 8000}} \cr
& {{\text{1}}^{{\text{st}}}}{\text{ part = Rs}}{\text{. 8000}} \cr
& {{\text{2}}^{{\text{nd}}}}{\text{ part}} \cr
& {\text{ = Rs}}{\text{. }}\left( {12000 - 8000} \right) \cr
& = {\text{Rs}}{\text{. 4000 }} \cr
& {\text{Hence maximum part}} \cr
& {\text{ = Rs}}{\text{. 8000}} \cr} $$
Alternate
Note : In such type of questions to save your valuable time follow the given below method.
Let two parts P1 and P2 respectively
According to the question,
$$\eqalign{
& \Rightarrow {{\text{P}}_1} \times \frac{{36}}{{100}} \times 1 = {{\text{P}}_2} \times \frac{9}{2} \times \frac{{16}}{{100}} \times 1 \cr
& \Rightarrow {{\text{P}}_1} \times 4 = 8{{\text{P}}_2} \cr
& \Rightarrow \frac{{{{\text{P}}_1}}}{{{{\text{P}}_2}}} = \frac{2}{1} \cr
& \Rightarrow {{\text{P}}_1}{\text{:}}{{\text{P}}_2} = 2:1 \cr
& {\text{Hence greater part}} \cr
& {\text{ = }}\frac{{12000}}{{\left( {2 + 1} \right)}} \times 2 \cr
& = {\text{Rs}}{\text{. }}8000 \cr} $$
Question 168. An automobile financier claims to be lending money at simple interest, but he includes the interest every six months for calculating the principal. If he is charging an interest of 10%, the effective rate of interest becomes
  1.    10%
  2.    10.25%
  3.    10.5%
  4.    None of these
 Discuss Question
Answer: Option B. -> 10.25%
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{.100}}{\text{}} \cr
& {\text{Then,}} \cr
& {\text{S}}{\text{.I}}{\text{.for first 6 months}} \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 10 \times 1}}{{100 \times 2}}} \right) \cr
& = {\text{Rs}}{\text{. }}5 \cr
& {\text{S}}{\text{.I}}{\text{.for last 6 months}} \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{105 \times 10 \times 1}}{{100 \times 2}}} \right) \cr
& = {\text{Rs}}{\text{. }}5.25 \cr
& So, \cr
& {\text{Amount at the end of 1year}} \cr
& = {\text{Rs}}{\text{.}}\left( {100 + 5 + 5.25} \right) \cr
& = {\text{Rs}}{\text{.}}\,110.25 \cr
& \therefore {\text{Effective rate}} \cr
& = \left( {110.25 - {\text{100}}} \right) \cr
& = 10.25\% \cr} $$
Question 169. A sum of money at a certain rate per annum of simple interest doubles in the 5 years and at a different rate becomes three times in 12 years. The lower rate of interest per annum is = ?
  1.    15%
  2.    20%
  3.    $${\text{15}}\frac{3}{4}$$ %
  4.    $$16\frac{2}{3}$$ %
 Discuss Question
Answer: Option D. -> $$16\frac{2}{3}$$ %
Rate of interest
$$ = \frac{{100(x - 1)}}{t}\% $$
Where x is the no. of times the sum becomes of itself. Here the sum is getting 3 times.
Therefore, x = 3
Where t is the time taken by sum to become x times of itself. Here, t = 12 years
By the short trick approach, we get
$$\eqalign{
& = \frac{{100(3 - 1)}}{{12}} \cr
& = \frac{{200}}{{12}} \cr
& = \frac{{50}}{3} = 16\frac{2}{3}\% \cr} $$
Alternative Method :
Let the principal be P and in the 2nd scenario, SI = 2P
$$\eqalign{
& {\text{Rate}} = \frac{{{\text{SI}} \times 100}}{{{\text{Principal}} \times {\text{Time}}}} \cr
& = \frac{{2{\text{P}} \times 100}}{{{\text{P}} \times 12}} \cr
& = \frac{{50}}{3} \cr
& = 16\frac{2}{3}\% \cr} $$
Question 170. Find the amount to be received after 2 years 6 months at the rate of 5% p.a. of simple interest on a sum of Rs. 3200.
  1.    Rs. 3800
  2.    Rs. 3500
  3.    Rs. 3600
  4.    Rs. 3900
 Discuss Question
Answer: Option C. -> Rs. 3600
$$\eqalign{
& {\text{Rate of interest}} = {\text{5}}\% {\text{ p}}{\text{.a}}{\text{.}} \cr
& {\text{sum}} = {\text{Rs}}{\text{. 3200}} \cr
& {\text{Time}} = {\text{2 years 6 months}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\frac{1}{2}{\text{years}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{5}{2}{\text{years}} \cr
& {\text{S}}{\text{.I}}{\text{.}} = \frac{{{\text{Prinicipal}} \times {\text{Time}} \times {\text{Rate}}}}{{100}} \cr
& \,\,\,\,\,\,\,\,\,\, = \frac{{3200 \times 5 \times 5}}{{2 \times 100}} \cr
& \,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}400 \cr
& \therefore {\text{Amount}} = {\text{Rs}}{\text{. sum}} + {\text{S}}{\text{.I}}. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {3200 + 400} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. 3600}}{\text{}} \cr} $$

Latest Videos

Latest Test Papers