Sail E0 Webinar

Quantitative Aptitude > Interest

SIMPLE INTEREST MCQs

Total Questions : 234 | Page 14 of 24 pages
Question 131. A sum of Rs. 7930 is divided into 3 parts and given at loan at 5% simple interest to A, B and C for 2, 3 and 4 years respectively. If the amounts of all three are equal after their respective periods of loan, then the A received a loan of = ?
  1.    Rs. 2800
  2.    Rs. 3050
  3.    Rs. 2750
  4.    Rs. 2760
 Discuss Question
Answer: Option D. -> Rs. 2760
According to the question,
$${\text{A}} + \left( {\frac{{{\text{A}} \times {\text{5}} \times {\text{2}}}}{{{\text{100}}}}} \right) = $$     $${\text{B}} + \left( {\frac{{{\text{B}} \times {\text{5}} \times {\text{3}}}}{{{\text{100}}}}} \right) = $$     $${\text{C}} + \left( {\frac{{{\text{C}} \times {\text{5}} \times {\text{4}}}}{{{\text{100}}}}} \right)$$
    110A   =   115B   =   120C
      22A   =     23B   =   24X
Ratio of amount ( by using L.C.M. of 22, 23 and 24)
$$\eqalign{
& {\text{276 : 264 : 253}} \cr
& {\text{A's loan = }}\frac{{276}}{{793}} \times {\text{7930}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ = Rs}}{\text{. 2760}} \cr} $$
Question 132. The principal which gives Rs 1 interest per day at a rate of 5% simple interest per annum is = ?
  1.    Rs. 5000
  2.    Rs. 35500
  3.    Rs. 7300
  4.    Rs. 3650
 Discuss Question
Answer: Option C. -> Rs. 7300
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{Interest = Rs}}{\text{. 1 per day}} \cr
& \therefore {\text{Interest in one year}} \cr
& {\text{ = 1}} \times {\text{365 = Rs}}{\text{. 365}} \cr
& \therefore {\text{S}}{\text{.I}}{\text{. = }}\frac{{{\text{P}} \times {\text{T}} \times {\text{R}}}}{{100}} \cr
& \Rightarrow 365 = \frac{{{\text{P}} \times 5 \times 1}}{{100}} \cr
& \Rightarrow {\text{P}} = \frac{{365 \times 100}}{5} \cr
& \Rightarrow {\text{P}} = {\text{Rs}}{\text{. 7300}} \cr} $$
Question 133. A man invested Rs. 5000 at some rate of simple interest and Rs. 4000 at 1 percent higher rate of interest. If the interest in both the cases after 4 years is same, the rate of interest in the former case is
  1.    4% p.a.
  2.    5% p.a.
  3.    $$6\frac{1}{4}$$ % p.a.
  4.    $$8\frac{1}{3}$$ % p.a.
 Discuss Question
Answer: Option A. -> 4% p.a.
Let the rates of interest in the former and latter cases be R% and (R + 1) % p.a.
Then,
$$\eqalign{
& 5000 \times {\text{R}} \times 4 = 4000 \times \left( {{\text{R}} + 1} \right) \times 4 \cr
& \Rightarrow \frac{{{\text{R}} + 1}}{{\text{R}}} = \frac{{5000 \times 4}}{{4000 \times 4}} \cr
& \Rightarrow 1 + \frac{1}{{\text{R}}} = 1 + \frac{1}{4} \cr
& \Rightarrow {\text{R}} = 4 \cr
& {\text{Hence,}} \cr
& {\text{Required rate}} = 4\% \,{\text{p}}{\text{.a}}{\text{.}} \cr} $$
Question 134. Arvind deposited a sum of money with a bank on 1st january, 2012 at 8% simple interest per annum. He received an amount 3144 on 7th August, 2012. The money he deposited with the bank was = ?
  1.    Rs. 3080
  2.    Rs. 2500
  3.    Rs. 3000
  4.    Rs. 3100
 Discuss Question
Answer: Option C. -> Rs. 3000
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{Amount = Rs}}{\text{. 3144}} \cr
& {\text{Rate = 8}}\% \cr
& {\text{Let, Principal = Rs}}{\text{. }}x \cr
& \therefore {\text{Time = }} \cr
& \frac{{30 + 29 + 31 + 30 + 31 + 30 + 31 + 7}}{{366}} \cr
& = \frac{{219}}{{366}} \cr
& \therefore {\text{SI = }}\frac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}} \cr
& \Rightarrow 3144 - x = \frac{{x \times 8 \times 219}}{{100 \times 366}} \cr
& = {\text{Rs}}{\text{. 3000}} \cr
& \cr
& {\bf{Alternate}} \cr
& \Rightarrow {\text{P}} + \frac{{{\text{P}} \times 8 \times \frac{{219}}{{365}}}}{{100}} = 3144 \cr
& \Rightarrow {\text{P}} + \frac{{{\text{P}} \times 8 \times \frac{3}{5}}}{{100}} = 3144 \cr
& \Rightarrow 100{\text{P}} + \frac{{24{\text{P}}}}{5} = 314400 \cr
& \Rightarrow \frac{{524{\text{P}}}}{5} = 314400 \cr
& \Rightarrow {\text{P = }}\frac{{314400 \times 5}}{{524}} \cr
& \Rightarrow {\text{P}} = {\text{600}} \times {\text{5}} \cr
& \Rightarrow {\text{P = Rs}}{\text{.}} \, 3000 \cr} $$
Question 135. A sum of Rs. 10 is lent to be returned in 11 monthly instalments of Rs. 1 each, interest being simple. The rate of interest is:
  1.    $$9\frac{1}{{11}}$$ %
  2.    10%
  3.    11%
  4.    $$21\frac{9}{{11}}$$ %
 Discuss Question
Answer: Option D. -> $$21\frac{9}{{11}}$$ %
⇒ Rs. 10 + S.I. on Rs. 10 for 11 months
= Rs. 11 + S.I. on Rs. 1 for (1 + 2 + 3 + 4 + ........... + 10) months
⇒ Rs. 10 + S.I. on Rs. 1 for 110 months
= Rs. 11 + S.I. on Rs. 1 for 55 months
S.I. on Rs. 1 for 55 months = Rs. 1
$$\eqalign{
& \therefore {\text{Rate}} = \left( {\frac{{100 \times 12}}{{1 \times 55}}} \right)\% \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 21\frac{9}{{11}}\% \cr} $$
Question 136. The simple interest on Rs. 36000 for the period from 5th January to 31st May, 2013 at 9.5% per annum is = ?
  1.    Rs. 1368
  2.    Rs. 1338
  3.    Rs. 1425
  4.    Rs. 1400
 Discuss Question
Answer: Option A. -> Rs. 1368
Number of days
= 26 + 28 + 31 + 30 + 30 + 31
= 146 days
$$\eqalign{
& \Rightarrow {\text{SI = }}\frac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}} \cr
& \Rightarrow {\text{SI = }}\frac{{36000 \times 9.5 \times 146}}{{100}} \cr
& \Rightarrow {\text{SI = Rs}}{\text{. 1368}} \cr} $$
Question 137. If the rate increases by 2%, the simple interest received on a sum of money increases by Rs. 108. If the time period is increased by 2 years, the simple interest on the same sum increases by Rs. 180. The sum is:
  1.    Rs. 1800
  2.    Rs. 3600
  3.    Rs. 5400
  4.    Data inadequate
  5.    None of these
 Discuss Question
Answer: Option D. -> Data inadequate
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x \cr
& {\text{Rate be R}}\% {\text{ p}}{\text{.a}}{\text{.}} \cr
& {\text{Time be T years}}{\text{.}} \cr
& {\text{Then,}} \cr
& \left[ {\frac{{x \times \left( {{\text{R}} \times 2} \right) \times {\text{T}}}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{T}} = 10800\,........(i) \cr
& And, \cr
& \left[ {\frac{{x \times {\text{R}} \times \left( {{\text{T}} + 2} \right)}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{R}} = 18000\,.......(ii) \cr} $$
Clearly, from (i) and (ii), we cannot the find the value of x.
So, the data is inadequate.
Question 138. A boy aged 12 years is left with Rs. 100000 which is under a trust. The trustees invest the money at 6% per annum and pay the minor boy a sum of Rs. 2500, for his pocket money at the end of each year. The expenses of trust come out to be Rs. 500 per annum. Find the amount that will be handed over to the minor boy after he attains the age of 18 years ?
  1.    Rs. 125000
  2.    Rs. 118000
  3.    Rs. 150000
  4.    Rs. 120000
 Discuss Question
Answer: Option B. -> Rs. 118000
$$\eqalign{
& {\text{Sum of the 12 years age }} \cr
& {\text{ = Rs}}{\text{. 100000}} \cr
& {\text{Sum of the 18 years age }} \cr
& = {\text{P}} + \frac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}} \cr
& = {\text{100000}} + \frac{{100000 \times 6 \times 6}}{{100}} \cr
& = {\text{100000}} + {\text{36000}} \cr
& = {\text{136000}} \cr} $$
Total expenses
= 2500 + 500 = 3000 per year
Total expenses ( 6 years )
= 3000 × 6 = Rs. 18000
Amount obtained
= 136000 - 18000
= 118000
Question 139. A computer is available for Rs. 39000 cash or Rs. 17000 as cash down payment followed by five monthly instalments of Rs. 4800 each. What is the rate of interest under the instalment plan?
  1.    35.71 % p.a.
  2.    36.71 % p.a.
  3.    37.71 % p.a.
  4.    38.71 % p.a.
 Discuss Question
Answer: Option D. -> 38.71 % p.a.
Total cost of the computer = Rs. 39000
Down payment = Rs. 17000
Balance = Rs. (39000 - 17000) = Rs. 22000.
Let the rate of interest be R% p.a.
Amount of Rs. 22000 for 5 months
$$\eqalign{
& = {\text{Rs}}{\text{.}}\left( {22000 + 22000 \times \frac{5}{{12}} \times \frac{{\text{R}}}{{100}}} \right) \cr
& = {\text{Rs}}{\text{.}}\left( {22000 + \frac{{275{\text{R}}}}{3}} \right) \cr} $$
The customer pays the shopkeeper Rs. 4800 after 1 month,
Rs. 4800 after 2 months, ...... and Rs. 4800 after 5 months.
Thus, the shopkeeper keeps Rs. 4800 for 4 months, Rs. 4800 for 3 months, Rs. 4800 for 2 months, Rs. 4800 for 1 months and Rs. 4800 at the end.
∴ sum of the amounts of these installments
= (Rs. 4800 + S.I. on Rs 4800 for 4 months) + (Rs. 4800 + S.I. on Rs. 4800 for 3 months) + ...... + (Rs. 4800 + S.I. on Rs. 4800 for 1 month) + Rs. 4800
= Rs. (4800 × 5) + S.I. on Rs. 4800 for (4 + 3 + 2 + 1) months
= Rs. 24000 + S.I. on Rs. 4800 for 10 months
$$ = {\text{Rs}}{\text{.}}\left( {24000 + {\text{4800}} \times {\text{R}} \times \frac{{10}}{{12}} \times \frac{1}{{100}}} \right) = $$          $${\text{Rs}}{\text{.}}\left( {24000 + 40{\text{R}}} \right)$$
$$\eqalign{
& \therefore 22000 + \frac{{275{\text{R}}}}{3} = 24000 + 40{\text{R}} \cr
& \Rightarrow \frac{{155}}{3} = 2000 \cr
& \Rightarrow {\text{R}} = \frac{{2000 \times 3}}{{155}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\, = 38.71\% \,{\text{p}}{\text{.a}}{\text{.}} \cr} $$
Question 140. If a sum doubles in 16 years, how much will it be in 8 years ?
  1.    $$1\frac{1}{2}$$ times
  2.    $$1\frac{1}{3}$$ times
  3.    $$1\frac{1}{4}$$ times
  4.    $$1\frac{3}{4}$$ times
 Discuss Question
Answer: Option A. -> $$1\frac{1}{2}$$ times
Let Sum = Rs. x. Then, S.I. = Rs. x, Time = 16 years
$$\eqalign{
& \therefore {\text{Rate}} = \left( {\frac{{100 \times x}}{{x \times 16}}} \right)\% = {\frac{25}{4}}\% = {6\frac{1}{4}}\% \cr
& {\text{Now, sum}} = {\text{Rs}}{\text{. }}x, \cr
& {\text{Time}} = 8{\kern 1pt} {\text{years}} \cr
& {\text{Rate}} = 6\frac{1}{4}\% \cr
& \therefore {\text{S}}{\text{.I}}{\text{.}} = {\text{Rs}}{\text{.}}\left( {\frac{{x \times 25 \times 8}}{{100 \times 4}}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}\frac{x}{2} \cr
& {\text{So,}} \cr
& {\text{Amount}} = {\text{Rs}}{\text{.}}\left( {x + \frac{x}{2}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}\frac{{3x}}{2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1\frac{1}{2}{\text{ times}} \cr} $$

Latest Videos

Latest Test Papers