Quantitative Aptitude > Interest
SIMPLE INTEREST MCQs
Total Questions : 234
| Page 13 of 24 pages
Answer: Option B. -> Rs. 2400
$$\eqalign{
& {\text{S}}{\text{.I}}{\text{.}} = {\text{Rs}}{\text{. 210}} \cr
& {\text{R}} = 3\frac{3}{4}\% = \frac{{15}}{4}\% \cr
& {\text{T}} = {\text{2}}\frac{{\text{1}}}{{\text{3}}}{\text{years}} = \frac{7}{3}{\text{years}} \cr
& \therefore {\text{Sum}} = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 210}}{{\frac{{15}}{4} \times \frac{7}{3}}}} \right) \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 210 \times 4 \times 3}}{{15 \times 7}}} \right) \cr
& = {\text{Rs}}{\text{. }}2400 \cr} $$
$$\eqalign{
& {\text{S}}{\text{.I}}{\text{.}} = {\text{Rs}}{\text{. 210}} \cr
& {\text{R}} = 3\frac{3}{4}\% = \frac{{15}}{4}\% \cr
& {\text{T}} = {\text{2}}\frac{{\text{1}}}{{\text{3}}}{\text{years}} = \frac{7}{3}{\text{years}} \cr
& \therefore {\text{Sum}} = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 210}}{{\frac{{15}}{4} \times \frac{7}{3}}}} \right) \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 210 \times 4 \times 3}}{{15 \times 7}}} \right) \cr
& = {\text{Rs}}{\text{. }}2400 \cr} $$
Answer: Option A. -> 6 : 3 : 2
Let the principal in each case = 100 units
According to the question,
1st part
2nd part
3rd part
Principal
→
100x6
100x3
100x2
Rate %
→
10
12
15
Time
→
6
10
12
Interest
→
60x6
120x3
180x2
Interest Interest is same in each, so equal the interest.
Hence required ratio
= 600 : 300 : 200 of sum
= 6 : 3 : 2
Let the principal in each case = 100 units
According to the question,
1st part
2nd part
3rd part
Principal
→
100x6
100x3
100x2
Rate %
→
10
12
15
Time
→
6
10
12
Interest
→
60x6
120x3
180x2
Interest Interest is same in each, so equal the interest.
Hence required ratio
= 600 : 300 : 200 of sum
= 6 : 3 : 2
Answer: Option A. -> 20 years
$$\eqalign{
& {\text{Let principal = 10P}} \cr
& {\text{Interest = 10P}} \times \frac{{30}}{{100}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ = 3P}} \cr
& {\text{According to the question,}} \cr
& {\text{Case (I)}} \cr
& \Rightarrow 3{\text{P = }}\frac{{{\text{10P}} \times {\text{R}} \times {\text{6}}}}{{100}} \cr
& \Rightarrow {\text{R = 5}}\% \cr
& {\text{Case (II)}} \cr
& {\text{Interest = Principal = 10P}} \cr
& \Rightarrow {\text{10P = }}\frac{{{\text{10P}} \times {\text{5}} \times {\text{t}}}}{{100}} \cr
& \Rightarrow {\text{t = 20 years}} \cr} $$
$$\eqalign{
& {\text{Let principal = 10P}} \cr
& {\text{Interest = 10P}} \times \frac{{30}}{{100}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ = 3P}} \cr
& {\text{According to the question,}} \cr
& {\text{Case (I)}} \cr
& \Rightarrow 3{\text{P = }}\frac{{{\text{10P}} \times {\text{R}} \times {\text{6}}}}{{100}} \cr
& \Rightarrow {\text{R = 5}}\% \cr
& {\text{Case (II)}} \cr
& {\text{Interest = Principal = 10P}} \cr
& \Rightarrow {\text{10P = }}\frac{{{\text{10P}} \times {\text{5}} \times {\text{t}}}}{{100}} \cr
& \Rightarrow {\text{t = 20 years}} \cr} $$
Answer: Option D. -> $$16\frac{2}{3}$$ years
$$\eqalign{
& {\text{Principal = Rs}}{\text{. 1000 }} \cr
& {\text{Rate = 5}}\% \cr
& {\text{Interest for first 10 years}} \cr
& = \frac{{1000 \times 5 \times 10}}{{100}} \cr
& = {\text{Rs}}{\text{. 500}} \cr
& {\text{After 10 years principal}} \cr
& = {\text{(1000}} + {\text{500)}} \cr
& {\text{ = Rs}}{\text{. 1500}} \cr
& {\text{Remaining interest}} \cr
& {\text{ = Rs}}{\text{. (2000}} - {\text{1500)}} \cr
& {\text{ = Rs}}{\text{. 500}} \cr
& {\text{Required time }} \cr
& {\text{ = }}\frac{{500}}{{1500}} \times \frac{{100}}{5} \cr
& = \frac{{100}}{15} \cr
& = \frac{{20}}{3} \cr
& = 6\frac{2}{3}{\text{ years}} \cr
& {\text{Total time}} \cr
& = \left( {10 + 6\frac{2}{3}} \right){\text{years}} \cr
& {\text{ = 16}}\frac{2}{3}{\text{ years}} \cr} $$
$$\eqalign{
& {\text{Principal = Rs}}{\text{. 1000 }} \cr
& {\text{Rate = 5}}\% \cr
& {\text{Interest for first 10 years}} \cr
& = \frac{{1000 \times 5 \times 10}}{{100}} \cr
& = {\text{Rs}}{\text{. 500}} \cr
& {\text{After 10 years principal}} \cr
& = {\text{(1000}} + {\text{500)}} \cr
& {\text{ = Rs}}{\text{. 1500}} \cr
& {\text{Remaining interest}} \cr
& {\text{ = Rs}}{\text{. (2000}} - {\text{1500)}} \cr
& {\text{ = Rs}}{\text{. 500}} \cr
& {\text{Required time }} \cr
& {\text{ = }}\frac{{500}}{{1500}} \times \frac{{100}}{5} \cr
& = \frac{{100}}{15} \cr
& = \frac{{20}}{3} \cr
& = 6\frac{2}{3}{\text{ years}} \cr
& {\text{Total time}} \cr
& = \left( {10 + 6\frac{2}{3}} \right){\text{years}} \cr
& {\text{ = 16}}\frac{2}{3}{\text{ years}} \cr} $$
Question 125. Rahul borrowed a sum of Rs. 1150 from Amit at the simple interest rate of 6 p.c.p.a. for 3 Years. He then added some more money to the borrowed sum and lent it to Sachin for the same time at 9 p.c.p.a simple interest. If Rahul gains Rs. 274.95 by way of interest on borrowed sum as well as his own amount from the whole transaction, then what is the sum lent by him to Sachin ?
Answer: Option D. -> Rs. 1785
Let the money added by Rahul be Rs. x
Then,
$$ \Rightarrow \frac{{\left( {1150 + x} \right) \times 9 \times 3}}{{100}} - $$ $$\frac{{1150 \times 6 \times 3}}{{100}} = $$ $$274.95$$
⇒ 1150 × 27 + 27x - 1150 × 18 = 27495
⇒ 27x + 1150 × (27 - 18) = 27495
⇒ 27x = 27495 - 10350
⇒ 27x = 17145
⇒ x = 635
So, sum lent by Rahul to Sachin
= Rs. ( 1150 + 635 )
= Rs. 1785
Let the money added by Rahul be Rs. x
Then,
$$ \Rightarrow \frac{{\left( {1150 + x} \right) \times 9 \times 3}}{{100}} - $$ $$\frac{{1150 \times 6 \times 3}}{{100}} = $$ $$274.95$$
⇒ 1150 × 27 + 27x - 1150 × 18 = 27495
⇒ 27x + 1150 × (27 - 18) = 27495
⇒ 27x = 27495 - 10350
⇒ 27x = 17145
⇒ x = 635
So, sum lent by Rahul to Sachin
= Rs. ( 1150 + 635 )
= Rs. 1785
Question 126. A person invested some account at the rate of 12% simple interest and a certain amount at rate of 10% simple interest. He received yearly interest of Rs. 130. But if he had interchanged the amounts invested,he would have received Rs. 4 more as interest. How much did he invest at 12% simple interest ?
Answer: Option B. -> Rs. 500
Let the amount invested at 12% be Rs. x and that invested at 10% be Rs. y
$$\eqalign{
& \text{Then,} \cr
& \to 12\% \,{\text{of }}x + 10\% \,{\text{of }}y = 130 \cr
& \Rightarrow 12x + 10y = 13000 \cr
& \Rightarrow 6x + 5y = 6500......{\text{(i)}} \cr
& {\text{And,}} \cr
& \to 10\% \,{\text{of }}x + 12\% \,{\text{of }}y = 134 \cr
& \Rightarrow 10x + 12y = 13400 \cr
& \Rightarrow 5x + 6y = 6700......{\text{(ii)}} \cr
& {\text{Adding (i) and (ii), we get:}} \cr
& 11\left( {x + y} \right) = 13200 \cr
& \Rightarrow x + y = 1200.......({\text{iii}}) \cr
& {\text{Subtracting (i) from (ii),}} \cr
& {\text{we get: }} - x + y = 200.......({\text{iv}}) \cr
& {\text{Adding (iii) and (iv), }} \cr
& {\text{we get}}:2y = 1400\,or\,y = 700 \cr
& {\text{Hence,}} \cr
& {\text{Amount invested at 12%}} \cr
& = \left( {1200 - 700} \right) \cr
& = {\text{Rs}}{\text{. 500}} \cr} $$
Let the amount invested at 12% be Rs. x and that invested at 10% be Rs. y
$$\eqalign{
& \text{Then,} \cr
& \to 12\% \,{\text{of }}x + 10\% \,{\text{of }}y = 130 \cr
& \Rightarrow 12x + 10y = 13000 \cr
& \Rightarrow 6x + 5y = 6500......{\text{(i)}} \cr
& {\text{And,}} \cr
& \to 10\% \,{\text{of }}x + 12\% \,{\text{of }}y = 134 \cr
& \Rightarrow 10x + 12y = 13400 \cr
& \Rightarrow 5x + 6y = 6700......{\text{(ii)}} \cr
& {\text{Adding (i) and (ii), we get:}} \cr
& 11\left( {x + y} \right) = 13200 \cr
& \Rightarrow x + y = 1200.......({\text{iii}}) \cr
& {\text{Subtracting (i) from (ii),}} \cr
& {\text{we get: }} - x + y = 200.......({\text{iv}}) \cr
& {\text{Adding (iii) and (iv), }} \cr
& {\text{we get}}:2y = 1400\,or\,y = 700 \cr
& {\text{Hence,}} \cr
& {\text{Amount invested at 12%}} \cr
& = \left( {1200 - 700} \right) \cr
& = {\text{Rs}}{\text{. 500}} \cr} $$
Answer: Option A. -> Rs. 210
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{Principal}} = {\text{Rs}}{\text{. }}2100 \cr
& {\text{Amount}} = {\text{Rs}}{\text{. }}2352 \cr
& {\text{SI}} = {\text{A}} - {\text{P}} \cr
& \,\,\,\,\,\,\, = 2352 - 2100 \cr
& \,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}252 \cr
& {\text{Time = 2 years,}} \cr
& {\text{Let rate = R% }} \cr
& {\text{R = }}\frac{{252}}{{2100}} \times \frac{{100}}{2}{\text{ = 6% }} \cr
& {\text{New rate of interest}} \cr
& {\text{ = (6}} - {\text{1)}} \cr
& {\text{ = 5% }} \cr
& {\text{New interest}} \cr
& {\text{ = }}\frac{{2100 \times 5 \times 2}}{{100}} \cr
& {\text{ = Rs}}{\text{. 210}} \cr
& {\text{Hence required interest}} \cr
& {\text{ = Rs}}{\text{. 210}} \cr} $$
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{Principal}} = {\text{Rs}}{\text{. }}2100 \cr
& {\text{Amount}} = {\text{Rs}}{\text{. }}2352 \cr
& {\text{SI}} = {\text{A}} - {\text{P}} \cr
& \,\,\,\,\,\,\, = 2352 - 2100 \cr
& \,\,\,\,\,\,\, = {\text{Rs}}{\text{. }}252 \cr
& {\text{Time = 2 years,}} \cr
& {\text{Let rate = R% }} \cr
& {\text{R = }}\frac{{252}}{{2100}} \times \frac{{100}}{2}{\text{ = 6% }} \cr
& {\text{New rate of interest}} \cr
& {\text{ = (6}} - {\text{1)}} \cr
& {\text{ = 5% }} \cr
& {\text{New interest}} \cr
& {\text{ = }}\frac{{2100 \times 5 \times 2}}{{100}} \cr
& {\text{ = Rs}}{\text{. 210}} \cr
& {\text{Hence required interest}} \cr
& {\text{ = Rs}}{\text{. 210}} \cr} $$
Question 128. Ram deposited a certain sum of money in a company at 12% per annum simple interest for 4 years and deposited equal amounts in fixed deposit in a bank for 5 years at 15% per annum simple interest. If the difference in the interest from two sources is Rs. 1350 then the sum deposited in each case is = ?
Answer: Option D. -> Rs. 5000
Difference between their rates he gained from both boys
$$\eqalign{
& \Rightarrow (15 \times 5)\% - (12 \times 4)\% \cr
& \Rightarrow 75\% - 48\% \cr
& \Rightarrow 27\% = 1350{\text{ }}({\text{given)}} \cr
& \Rightarrow 100\% = {\text{Rs}}{\text{. 5000}} \cr} $$
Difference between their rates he gained from both boys
$$\eqalign{
& \Rightarrow (15 \times 5)\% - (12 \times 4)\% \cr
& \Rightarrow 75\% - 48\% \cr
& \Rightarrow 27\% = 1350{\text{ }}({\text{given)}} \cr
& \Rightarrow 100\% = {\text{Rs}}{\text{. 5000}} \cr} $$
Answer: Option B. -> Rs. 600
According to the question,
Principal + SI for 2 year = Rs. 720 ......(i)
Principal + SI for 7 year = Rs. 1020 ......(ii)
Subtracting equation (i) from (ii)
⇒ SI for 5 years = (1020 - 720) = Rs. 300
⇒ SI for 1 years = Rs. 60
⇒ SI for 2 years = 60 × 2 = Rs. 120
⇒ Principal amount = (Amount after 2 years - 2 years SI) = (720 - 120)
⇒ Principal amount = Rs. 600
According to the question,
Principal + SI for 2 year = Rs. 720 ......(i)
Principal + SI for 7 year = Rs. 1020 ......(ii)
Subtracting equation (i) from (ii)
⇒ SI for 5 years = (1020 - 720) = Rs. 300
⇒ SI for 1 years = Rs. 60
⇒ SI for 2 years = 60 × 2 = Rs. 120
⇒ Principal amount = (Amount after 2 years - 2 years SI) = (720 - 120)
⇒ Principal amount = Rs. 600
Answer: Option A. -> Rs. 2000, 3.5 years and 4 years
$$\eqalign{
& {\text{Let each sum}} = {\text{Rs}}{\text{. }}x. \cr
& {\text{Let the first sum be invested for}} \cr
& \left( {T - \frac{1}{2}} \right){\text{years and}} \cr
& {\text{the second sum for }}T{\text{ years}}{\text{.}} \cr
& {\text{Then,}} \cr
& x + \frac{{x \times 8 \times \left( {T - \frac{1}{2}} \right)}}{{100}} = 2560 \cr
& \Rightarrow 100x + 8xT - 4x = 256000 \cr
& \Rightarrow 96x + 8xT = 256000....(i) \cr
& {\text{And,}} \cr
& x + \frac{{x \times 7 \times T}}{{100}} = 2560 \cr
& \Rightarrow 100x + 7xT = 256000....(ii) \cr
& {\text{From(i) and (ii), we get:}} \cr
& 96x + 8xT = 100x + 7xT \cr
& \Rightarrow 4x = xT \cr
& \Rightarrow T = 4 \cr
& {\text{Putting }}T = {\text{4 in (i),we get:}} \cr
& 96x + 32x = 256000 \cr
& \Rightarrow 128x = 256000 \cr
& \Rightarrow x = 2000 \cr
& {\text{Hence,}} \cr
& {\text{each sum}} = {\text{Rs}}{\text{. 2000}} \cr
& {\text{time periods}} = \cr
& {\text{4 years and }}3\frac{1}{2}{\text{years}} \cr} $$
$$\eqalign{
& {\text{Let each sum}} = {\text{Rs}}{\text{. }}x. \cr
& {\text{Let the first sum be invested for}} \cr
& \left( {T - \frac{1}{2}} \right){\text{years and}} \cr
& {\text{the second sum for }}T{\text{ years}}{\text{.}} \cr
& {\text{Then,}} \cr
& x + \frac{{x \times 8 \times \left( {T - \frac{1}{2}} \right)}}{{100}} = 2560 \cr
& \Rightarrow 100x + 8xT - 4x = 256000 \cr
& \Rightarrow 96x + 8xT = 256000....(i) \cr
& {\text{And,}} \cr
& x + \frac{{x \times 7 \times T}}{{100}} = 2560 \cr
& \Rightarrow 100x + 7xT = 256000....(ii) \cr
& {\text{From(i) and (ii), we get:}} \cr
& 96x + 8xT = 100x + 7xT \cr
& \Rightarrow 4x = xT \cr
& \Rightarrow T = 4 \cr
& {\text{Putting }}T = {\text{4 in (i),we get:}} \cr
& 96x + 32x = 256000 \cr
& \Rightarrow 128x = 256000 \cr
& \Rightarrow x = 2000 \cr
& {\text{Hence,}} \cr
& {\text{each sum}} = {\text{Rs}}{\text{. 2000}} \cr
& {\text{time periods}} = \cr
& {\text{4 years and }}3\frac{1}{2}{\text{years}} \cr} $$