Sail E0 Webinar

Quantitative Aptitude > Interest

COMPOUND INTEREST MCQs

Total Questions : 262 | Page 16 of 27 pages
Question 151. A sum becomes Rs. 2916 in 2 years at 8% per annum compound interest. The simple interest at 9% per annum for 3 years on the same amount will be = ?
  1.    Rs. 600
  2.    Rs. 675
  3.    Rs. 650
  4.    Rs. 625
 Discuss Question
Answer: Option B. -> Rs. 675
$$\eqalign{
& {\text{Amount = Rs}}{\text{. 2916}} \cr
& {\text{Time = 2 years }} \cr
& {\text{Rate = 8}}\% \cr
& {\text{Effective rate }}\% {\text{ CI for 2 years}} \cr
& {\text{ = 8 + 8 + }}\frac{{8 \times 8}}{{100}} = 16.64\% \cr
& {\text{Required sum}} \cr
& {\text{ = }}\frac{{2916}}{{\left( {100 + 16.64} \right)}} \times 100 \cr
& = {\text{Rs}}{\text{. }}2500 \cr
& {\text{Required simple interest}} \cr
& {\text{ = }}\frac{{2500 \times 9 \times 3}}{{100}} \cr
& = {\text{Rs}}{\text{. }}675 \cr} $$
Question 152. A finance company declares that, at a certain compound interest rate, a sum of money deposited by anyone will become 8 times in 3 years. If the same amount is deposited at the same compound rate of interest, then in how many years will it become 16 times ?
  1.    4 years
  2.    5 years
  3.    6 years
  4.    7 years
 Discuss Question
Answer: Option A. -> 4 years
$$\eqalign{
& P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8P \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8 \cr
& {\text{Let }}P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16P \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16 = {2^4} = {\left( {{2^3}} \right)^{\frac{4}{3}}} \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = {\left( 8 \right)^{\frac{4}{3}}} \cr
& \Rightarrow {\left\{ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^3}} \right\}^{\frac{4}{3}}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^4} \cr
& \Rightarrow n = 4 \cr
& \therefore {\text{ Required time 4 years}} \cr} $$
Question 153. A sum of Rs 210 was taken as a loan. This is to be paid back in two equal installments. If the rate of interest be 10% compounded annually, then the value of each installment is = ?
  1.    Rs. 127
  2.    Rs. 121
  3.    Rs. 210
  4.    Rs. 225
 Discuss Question
Answer: Option B. -> Rs. 121
$$\eqalign{
& {\text{Rate of interest}} \Rightarrow {\text{ 10% = }}\frac{1}{{10}} \cr
& {\text{Each installment of 2 years}} \cr
& \Rightarrow \frac{{10}}{{11}} \times \frac{{\left( {10 + 11} \right)}}{{11}} \times {\text{ Installment = P}}{\text{.A}} \cr
& \Rightarrow \frac{{10}}{{11}} \times \frac{{\left( {10 + 11} \right)}}{{11}} \times {\text{ Installment = 210}} \cr
& \Rightarrow {\text{Installment = 121}} \cr} $$
Question 154. A certain sum will amount to Rs 12100 in 2 years at 10% per annum of compound interest, interest being compounded annually. The sum is = ?
  1.    Rs. 12000
  2.    Rs. 6000
  3.    Rs. 8000
  4.    Rs. 10000
 Discuss Question
Answer: Option D. -> Rs. 10000
Given,
Amount = 12,100; r = 10%, t = 2 yrs
$$\eqalign{
& {\text{Amount}} = P{\left[ {1 + \frac{r}{{100}}} \right]^t} \cr
& 12100 = P{\left[ {1 + \frac{{10}}{{100}}} \right]^2} \cr
& \Rightarrow 12100 = P{\left[ {\frac{{11}}{{10}}} \right]^2} \cr
& \Rightarrow 12100 = P \times \frac{{11}}{{10}} \times \frac{{11}}{{10}} \cr
& \Rightarrow P = \frac{{12100 \times 10 \times 10}}{{11 \times 11}} \cr
& \Rightarrow P = 10000 \cr} $$
Question 155. One can purchase a flat from a house building society for Rs. 55000 cash or on the terms that he should pay Rs. 4275 as cash down payment and get the rest in three equal installments. The society charges interest at the rate of 16% per annum compounded half-yearly. If the flat is purchased under installment plan, find the value of each installment ?
  1.    Rs. 18756
  2.    Rs. 19292
  3.    Rs. 19683
  4.    Rs. 20285
 Discuss Question
Answer: Option C. -> Rs. 19683
Total cost of the flat = Rs. 55000
Down payment = Rs. 4275
Balance = Rs. (55000 - 4275) = Rs. 50725
Rate of interest = 8% per half year
Let the value of each instalment be Rs. x
P.W. of Rs. x due 6 months hence + P.W. of Rs. x due 1 year hence + P.W. of Rs. x due $$1\frac{1}{2}$$ years hence = 50725
  $$ \Rightarrow \frac{x}{{\left( {1 + \frac{8}{{100}}} \right)}} + $$    $$\frac{x}{{{{\left( {1 + \frac{8}{{100}}} \right)}^2}}} + $$   $$\frac{x}{{{{\left( {1 + \frac{8}{{100}}} \right)}^3}}} = $$    $$50725$$
$$\eqalign{
& \Rightarrow \frac{{25x}}{{27}} + \frac{{625x}}{{729}} + \frac{{15625x}}{{19683}} = 50725 \cr
& \Rightarrow \frac{{50725x}}{{19683}} = 50725 \cr
& \Rightarrow x = \left( {\frac{{50725 \times 19683}}{{50725}}} \right) = 19683 \cr} $$
Question 156. The sum of money which when given on compound interest at 18% per annum would fetch Rs 960 more when the interest is payable half-yearly then when it was payable annually for 2 years is = ?
  1.    Rs. 60000
  2.    Rs. 30000
  3.    Rs. 40000
  4.    Rs. 50000
 Discuss Question
Answer: Option D. -> Rs. 50000
Rate of interest = 18%
Time = 2 year
When the interest is payable half yearly
Then, rate of interest = 9%
Time = 4 half - years
Let the principal be Rs. x
$$\eqalign{
& {\text{C}}{\text{.I}}{\text{. = }}x\left[ {{{\left( {1 + \frac{R}{{100}}} \right)}^T} - 1} \right]{\text{ }} \cr
& = x\left[ {{{\left( {1 + \frac{9}{{100}}} \right)}^4} - 1} \right] \cr
& = x\left[ {{{\left( {\frac{{109}}{{100}}} \right)}^4} - 1} \right] \cr
& = x\left[ {1.4116 - 1} \right] \cr
& = Rs.\,0.4116x \cr
& {\text{According to question}} \cr
& = x\left[ {{{\left( {1 + \frac{{18}}{{100}}} \right)}^2} - 1} \right] \cr
& = x\left[ {{{\left( {\frac{{118}}{{100}}} \right)}^2} - 1} \right] \cr
& = x\left[ {{{\left( {1.18} \right)}^2} - 1} \right] \cr
& = x\left[ {1.3924 - 1} \right] \cr
& = Rs.\,0.3924x \cr
& {\text{According to question,}} \cr
& 0.4116x - 0.3924x = 960 \cr
& \Rightarrow x = \frac{{960}}{{0.0192}} \cr
& \Rightarrow x = \frac{{960 \times 10000}}{{192}} \cr
& \Rightarrow x = 50000 \cr
& {\text{Hence, sum of money}} \cr
& {\text{ = Rs. 50000}} \cr} $$
Question 157. Find the rate percent per annum if Rs. 2000 amounts to Rs. 2315.25 in one and half years interest being compounded half yearly.
  1.    10%
  2.    11.5%
  3.    5%
  4.    20%
 Discuss Question
Answer: Option A. -> 10%
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{compounded half yearly}} \cr
& {\text{Rate = }}\frac{{\text{R}}}{2} \cr
& {\text{Time = }}\frac{{{\text{2T}}}}{3} \cr
& {\text{Amount = P}}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 2315.25 = 2000{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{2315.25}}{{2000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{9261}}{{8000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow {\left( {\frac{{21}}{{20}}} \right)^3} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 1 + \frac{{\text{R}}}{{200}} = \frac{{21}}{{20}} \cr
& \Rightarrow {\text{R = 10}}\% \cr} $$
Question 158. When principal = Rs. S, rate of interest = 2r % p.a., then a person will get after 3 years at compound interest = ?
  1.    $${\text{Rs}}{\text{. }}\frac{{6{\text{Sr}}}}{{100}}$$
  2.    $${\text{Rs}}{\text{. S}}{\left( {1 + \frac{{\text{r}}}{{50}}} \right)^3}$$
  3.    $${\text{Rs}}{\text{. S}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^3}$$
  4.    $${\text{Rs}}{\text{. 3S}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^3}$$
 Discuss Question
Answer: Option B. -> $${\text{Rs}}{\text{. S}}{\left( {1 + \frac{{\text{r}}}{{50}}} \right)^3}$$
$$\eqalign{
& {\text{According to the question}} \cr
& {\text{Principal = Rs S}} \cr
& {\text{Rate }}\% {\text{ = 2r}}\,\% {\text{ p}}{\text{.a}}{\text{.}} \cr
& {\text{Time = 3 years}} \cr
& \therefore {\text{A = P}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^T} \cr
& \Leftrightarrow {\text{A = S}}{\left( {1 + \frac{{{\text{2r}}}}{{100}}} \right)^3} \cr
& \Leftrightarrow {\text{A = S}}{\left( {1 + \frac{{\text{r}}}{{50}}} \right)^3} \cr} $$
Question 159. In what time will Rs 64000 amounts to Rs 68921 at 5% per annum interest being compounded half yearly ?
  1.    $$1\frac{1}{2}$$ years
  2.    2 years
  3.    3 years
  4.    $$2\frac{1}{2}$$ years
 Discuss Question
Answer: Option A. -> $$1\frac{1}{2}$$ years
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{Amount}} = {\text{ }}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^{2 \times {\text{t}}}} \cr
& \Rightarrow 68921 = 64000{\left( {1 + \frac{5}{{2 \times 100}}} \right)^{2 \times {\text{t}}}} \cr
& \Rightarrow \frac{{68921}}{{64000}} = {\left( {1 + \frac{1}{{40}}} \right)^{2 \times {\text{t}}}} \cr
& \Rightarrow {\left( {\frac{{41}}{{40}}} \right)^3} = {\left( {\frac{{41}}{{40}}} \right)^{2 \times {\text{t}}}} \cr
& \Rightarrow 2{\text{t = 3}} \cr
& \Rightarrow {\text{t = }}\frac{3}{2} \cr
& \Rightarrow {\text{t = 1}}\frac{1}{2}{\text{ years}} \cr} $$
Question 160. At what rate of compound interest per annum will a sum of Rs. 1200 become Rs. 1348.32 in 2 years ?
  1.    6.5%
  2.    4.5%
  3.    6%
  4.    7.5%
 Discuss Question
Answer: Option C. -> 6%
$$\eqalign{
& {\text{A = P }}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} \cr
& \Rightarrow 1348.32 = 1200{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr
& \Rightarrow \frac{{134832}}{{120000}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr
& \Rightarrow \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr
& \Rightarrow \frac{{2809}}{{2500}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr
& \Rightarrow {\left( {\frac{{53}}{{50}}} \right)^2} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^2} \cr
& \Rightarrow \frac{{53}}{{50}} = 1 + \frac{{\text{R}}}{{100}} \cr
& \Rightarrow {\text{R}} = {\text{ 6% }} \cr} $$

Latest Videos

Latest Test Papers