Question
The simple interest accrued on a certain principal in 5 years at the rate of 12 p.c.p.a. is Rs.1536. what amount of simple interest would one get if one invests Rs.1000 more than the previous principal for 2 years and at the same rate p.c.p.a. ?
Answer: Option E
$$\eqalign{
& {\text{Sum}} = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 1536}}{{12 \times 5}}} \right) \cr
& = {\text{Rs}}{\text{. }}2560 \cr
& Now, \cr
& P = {\text{Rs}}{\text{.}}\left( {2560 + 1000} \right) \cr
& \,\,\,\,\,\, = {\text{Rs}}{\text{. }}3560 \cr
& {\text{T}} = {\text{2years}} \cr
& {\text{R}} = {\text{12}}\% \cr
& \therefore S.I. \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{3560 \times 12 \times 2}}{{100}}} \right) \cr
& = {\text{Rs}}{\text{.}}\,854.40 \cr} $$
Was this answer helpful ?
$$\eqalign{
& {\text{Sum}} = {\text{Rs}}{\text{.}}\left( {\frac{{100 \times 1536}}{{12 \times 5}}} \right) \cr
& = {\text{Rs}}{\text{. }}2560 \cr
& Now, \cr
& P = {\text{Rs}}{\text{.}}\left( {2560 + 1000} \right) \cr
& \,\,\,\,\,\, = {\text{Rs}}{\text{. }}3560 \cr
& {\text{T}} = {\text{2years}} \cr
& {\text{R}} = {\text{12}}\% \cr
& \therefore S.I. \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{3560 \times 12 \times 2}}{{100}}} \right) \cr
& = {\text{Rs}}{\text{.}}\,854.40 \cr} $$
Was this answer helpful ?
Submit Solution