Question
The difference between simple interest and the true discount on Rs. 2400 due 4 years
hence at 5% per annum simple interest is -
hence at 5% per annum simple interest is -
Answer: Option D
$$\eqalign{
& {\text{Given}}\,{\text{A}} = 2400 \cr
& {\text{R}} = 5\% \cr
& {\text{T}} = 4{\text{year}} \cr
& \therefore \,TD\, = \frac{{A \times R \times T}}{{100 + R \times T}} \cr
& TD = \frac{{2400 \times 4 \times 5}}{{100 + 20}} \cr
& TD = {\text{Rs}}{\text{. }}400 \cr
& \therefore \,{\text{S}}{\text{.I}}{\text{.}} - {\text{TD}} = \frac{{TD \times R \times T}}{{100}} \cr
& = \frac{{400 \times 5 \times 4}}{{100}} \cr
& = {\text{Rs}}{\text{. 80}}{\text{}} \cr} $$
Was this answer helpful ?
$$\eqalign{
& {\text{Given}}\,{\text{A}} = 2400 \cr
& {\text{R}} = 5\% \cr
& {\text{T}} = 4{\text{year}} \cr
& \therefore \,TD\, = \frac{{A \times R \times T}}{{100 + R \times T}} \cr
& TD = \frac{{2400 \times 4 \times 5}}{{100 + 20}} \cr
& TD = {\text{Rs}}{\text{. }}400 \cr
& \therefore \,{\text{S}}{\text{.I}}{\text{.}} - {\text{TD}} = \frac{{TD \times R \times T}}{{100}} \cr
& = \frac{{400 \times 5 \times 4}}{{100}} \cr
& = {\text{Rs}}{\text{. 80}}{\text{}} \cr} $$
Was this answer helpful ?
Submit Solution