Question
Rs. 6200 amounts to Rs. 9176 in 4 years at simple interest. If the interest rate is increased by 3% it would amount to how much?
Answer: Option C
$$\eqalign{
& {\text{P}} = {\text{Rs}}{\text{. 6200}} \cr
& {\text{S}}{\text{.I}}{\text{.}} \cr
& = {\text{Rs}}{\text{.}}\left( {{\text{9176}} - {\text{6200}}} \right) \cr
& = {\text{Rs}}{\text{. }}2976 \cr
& {\text{T}} = 4\,{\text{years}} \cr
& \therefore {\text{Rate}} \cr
& = \left( {\frac{{100 \times 2976}}{{6200 \times 4}}} \right)\% \cr
& = 12\% \cr
& {\text{New }}{\text{rate}} \cr
& = \left( {12 + 3} \right)\% \cr
& = 15\% \cr
& {\text{New}}\,{\text{S}}{\text{.I}}{\text{.}} \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{{\text{6200}} \times 15 \times 4}}{{100}}} \right) \cr
& = \text{Rs.} \,3720 \cr
& {\text{New}}\,{\text{amount}} \cr
& = {\text{Rs}}{\text{.}}\left( {{\text{6200}} + 3720} \right) \cr
& = {\text{Rs}}{\text{.}}\,9920 \cr} $$
Was this answer helpful ?
$$\eqalign{
& {\text{P}} = {\text{Rs}}{\text{. 6200}} \cr
& {\text{S}}{\text{.I}}{\text{.}} \cr
& = {\text{Rs}}{\text{.}}\left( {{\text{9176}} - {\text{6200}}} \right) \cr
& = {\text{Rs}}{\text{. }}2976 \cr
& {\text{T}} = 4\,{\text{years}} \cr
& \therefore {\text{Rate}} \cr
& = \left( {\frac{{100 \times 2976}}{{6200 \times 4}}} \right)\% \cr
& = 12\% \cr
& {\text{New }}{\text{rate}} \cr
& = \left( {12 + 3} \right)\% \cr
& = 15\% \cr
& {\text{New}}\,{\text{S}}{\text{.I}}{\text{.}} \cr
& = {\text{Rs}}{\text{.}}\left( {\frac{{{\text{6200}} \times 15 \times 4}}{{100}}} \right) \cr
& = \text{Rs.} \,3720 \cr
& {\text{New}}\,{\text{amount}} \cr
& = {\text{Rs}}{\text{.}}\left( {{\text{6200}} + 3720} \right) \cr
& = {\text{Rs}}{\text{.}}\,9920 \cr} $$
Was this answer helpful ?
Submit Solution