Question
If the rate increases by 2%, the simple interest received on a sum of money increases by Rs. 108. If the time period is increased by 2 years, the simple interest on the same sum increases by Rs. 180. The sum is:
Answer: Option D
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x \cr
& {\text{Rate be R}}\% {\text{ p}}{\text{.a}}{\text{.}} \cr
& {\text{Time be T years}}{\text{.}} \cr
& {\text{Then,}} \cr
& \left[ {\frac{{x \times \left( {{\text{R}} \times 2} \right) \times {\text{T}}}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{T}} = 10800\,........(i) \cr
& And, \cr
& \left[ {\frac{{x \times {\text{R}} \times \left( {{\text{T}} + 2} \right)}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{R}} = 18000\,.......(ii) \cr} $$
Clearly, from (i) and (ii), we cannot the find the value of x.
So, the data is inadequate.
Was this answer helpful ?
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x \cr
& {\text{Rate be R}}\% {\text{ p}}{\text{.a}}{\text{.}} \cr
& {\text{Time be T years}}{\text{.}} \cr
& {\text{Then,}} \cr
& \left[ {\frac{{x \times \left( {{\text{R}} \times 2} \right) \times {\text{T}}}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{T}} = 10800\,........(i) \cr
& And, \cr
& \left[ {\frac{{x \times {\text{R}} \times \left( {{\text{T}} + 2} \right)}}{{100}}} \right] - \left( {\frac{{x \times {\text{R}} \times {\text{T}}}}{{100}}} \right) = 108 \cr
& \Leftrightarrow 2x{\text{R}} = 18000\,.......(ii) \cr} $$
Clearly, from (i) and (ii), we cannot the find the value of x.
So, the data is inadequate.
Was this answer helpful ?
Submit Solution