Question
Find the rate percent per annum if Rs. 2000 amounts to Rs. 2315.25 in one and half years interest being compounded half yearly.
Answer: Option A
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{compounded half yearly}} \cr
& {\text{Rate = }}\frac{{\text{R}}}{2} \cr
& {\text{Time = }}\frac{{{\text{2T}}}}{3} \cr
& {\text{Amount = P}}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 2315.25 = 2000{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{2315.25}}{{2000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{9261}}{{8000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow {\left( {\frac{{21}}{{20}}} \right)^3} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 1 + \frac{{\text{R}}}{{200}} = \frac{{21}}{{20}} \cr
& \Rightarrow {\text{R = 10}}\% \cr} $$
Was this answer helpful ?
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{compounded half yearly}} \cr
& {\text{Rate = }}\frac{{\text{R}}}{2} \cr
& {\text{Time = }}\frac{{{\text{2T}}}}{3} \cr
& {\text{Amount = P}}{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 2315.25 = 2000{\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{2315.25}}{{2000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{231525}}{{200000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow \frac{{9261}}{{8000}} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow {\left( {\frac{{21}}{{20}}} \right)^3} = {\left( {1 + \frac{{\text{R}}}{{2 \times 100}}} \right)^3} \cr
& \Rightarrow 1 + \frac{{\text{R}}}{{200}} = \frac{{21}}{{20}} \cr
& \Rightarrow {\text{R = 10}}\% \cr} $$
Was this answer helpful ?
Submit Solution