Question
A sum was put at simple interest at a certain rate for 3 years. Had it been put at 1% higher rate, it would have fetched Rs. 5100 more. The sum is
Answer: Option D
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x{\text{ and}} \cr
& {\text{original rate be R}}\% \cr
& {\text{Then,}} \cr
& \Rightarrow \frac{{x \times \left( {{\text{R}} + 1} \right) \times 3}}{{100}} - \frac{{x \times {\text{R}} \times 3}}{{100}} = 5100 \cr
& \Rightarrow 3{\text{R}}x + 3x - 3{\text{R}}x = 510000 \cr
& \Rightarrow 3x = 510000 \cr
& \Rightarrow x = 170000. \cr
& {\text{Hence,}} \cr
& {\text{Sum}} = {\text{Rs}}.170000 \cr} $$
Was this answer helpful ?
$$\eqalign{
& {\text{Let the sum be Rs}}{\text{. }}x{\text{ and}} \cr
& {\text{original rate be R}}\% \cr
& {\text{Then,}} \cr
& \Rightarrow \frac{{x \times \left( {{\text{R}} + 1} \right) \times 3}}{{100}} - \frac{{x \times {\text{R}} \times 3}}{{100}} = 5100 \cr
& \Rightarrow 3{\text{R}}x + 3x - 3{\text{R}}x = 510000 \cr
& \Rightarrow 3x = 510000 \cr
& \Rightarrow x = 170000. \cr
& {\text{Hence,}} \cr
& {\text{Sum}} = {\text{Rs}}.170000 \cr} $$
Was this answer helpful ?
Submit Solution