Question
A sum of Rs. 12000 deposited at compound interest become double after 5 years. After 20 years it will become ?
Answer: Option D
$$\eqalign{
& 12000 \times {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 24000 \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 2 \cr
& \therefore {\left[ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^5}} \right]^4} = {2^4} = 16 \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \cr
& \Rightarrow {\text{P}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}}{\text{ = 16P}} \cr
& \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \times 12000 \cr
& \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 192000 \cr} $$
Was this answer helpful ?
$$\eqalign{
& 12000 \times {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 24000 \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^5} = 2 \cr
& \therefore {\left[ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^5}} \right]^4} = {2^4} = 16 \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \cr
& \Rightarrow {\text{P}}{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}}{\text{ = 16P}} \cr
& \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 16 \times 12000 \cr
& \Rightarrow 12000{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^{20}} = 192000 \cr} $$
Was this answer helpful ?
Submit Solution