Question
$12/{3 + √5 + 2√2}$ is equal to
Answer: Option D
Answer: (d)Expression= $12/{3 + √5 + 2√2}$= ${12(3+√5-2√2)}/{[(3+√5)+2√2][(3+√5)-2√2]}$[Rationalising the denominator]= ${12(3+√5-2√2)}/{(3+√5)^2- (2√2)^2}$= ${12(3+√5-2√2)}/{9+5+6√5-8}$= ${12(3√5-2√2)}/{6√5+6}$= ${2(3+√5-2√2)}/{√5+1}$= ${2(3+√5-2√2)(√5-1)}/{(√5+1)(√5-1)}$= ${2(3√5+5-2√{10}-3-√5+2√2)}/{5-1}$= ${2(2√5+2√2-2√{10}+2)}/4$= ${2×2(√5+√2-√{10}+1)}/4$= $1+√5+√2-√{10}$
Was this answer helpful ?
Answer: (d)Expression= $12/{3 + √5 + 2√2}$= ${12(3+√5-2√2)}/{[(3+√5)+2√2][(3+√5)-2√2]}$[Rationalising the denominator]= ${12(3+√5-2√2)}/{(3+√5)^2- (2√2)^2}$= ${12(3+√5-2√2)}/{9+5+6√5-8}$= ${12(3√5-2√2)}/{6√5+6}$= ${2(3+√5-2√2)}/{√5+1}$= ${2(3+√5-2√2)(√5-1)}/{(√5+1)(√5-1)}$= ${2(3√5+5-2√{10}-3-√5+2√2)}/{5-1}$= ${2(2√5+2√2-2√{10}+2)}/4$= ${2×2(√5+√2-√{10}+1)}/4$= $1+√5+√2-√{10}$
Was this answer helpful ?
More Questions on This Topic :
Question 3. $(√8 - √4 - √2)$ equals :....
Question 10. The value of $√{2}^4 + √^3{64} + √^4{2^8}$ is :....
Submit Solution