Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 8 of 55 pages
Question 71.

The square root of 64009 is:

  1.    253
  2.    347
  3.    363
  4.    803
 Discuss Question
Answer: Option A. -> 253

2|64009( 253
|4
|----------
45|240
|225
|----------
503| 1509
| 1509
|----------
| X
|----------

Therefore \(\sqrt{64009}=253.\)

Question 72.

Find the 10th term of -5,-8,-11,......

  1.    -28
  2.    -18
  3.    -32
  4.    -20
  5.    None of these
 Discuss Question
Answer: Option C. -> -32
 -  The 10th term is  -32
Question 73.

Find the 32nd term in the following series 3,7,11,.......

  1.    120
  2.    230
  3.    220
  4.    127
  5.    None of these
 Discuss Question
Answer: Option D. -> 127

 -  The 32nd term is 127

The given series is an arithmetic progression with the first term, a = 3 and common difference, d = 4. We need to find the 32nd term of the series.

The formula to find the nth term of an arithmetic progression is given by:

an = a + (n - 1) d

where,

an is the nth term of the AP

a is the first term of the AP

d is the common difference

n is the position of the term to be found

Substituting the given values in the formula, we get:

a32 = 3 + (32 - 1) 4

a32 = 3 + 31 x 4

a32 = 3 + 124

a32 = 127

Therefore, the 32nd term of the given series is 127, which is Option D.

To summarize the solution:

  • The given series is an arithmetic progression with a = 3 and d = 4.
  • The formula to find the nth term of an AP is an = a + (n - 1) d.
  • Substituting the given values in the formula, we get a32 = 3 + (32 - 1) 4.
  • Solving the expression, we get a32 = 127.
  • Hence, the correct answer is Option D.
Question 74.

Find the position of 98 in the following series 3,8,13 ....?

  1.    12th term
  2.    20th term
  3.    34th term
  4.    36th term
  5.    None of these
 Discuss Question
Answer: Option B. -> 20th term
To find the position of 98 in the given series 3, 8, 13, ..., we need to first determine the pattern of the series.
The given series is an arithmetic sequence where the common difference is 5. This means that each term in the sequence is obtained by adding 5 to the previous term.
To find the position of 98 in the sequence, we can use the following formula to find the nth term of an arithmetic sequence:
an = a1 + (n - 1)d
where:an = the nth term of the sequencea1 = the first term of the sequenced = the common differencen = the position of the term we want to find
We know that a1 = 3 and d = 5, and we want to find the value of n for which an = 98. So we can rearrange the formula as follows:
n = (an - a1)/d + 1
Substituting the given values, we get:
n = (98 - 3)/5 + 1n = 20
Therefore, the position of 98 in the given series is the 20th term. So the correct option is B.
Question 75.

Find the 35th term if the first term is 8 and common difference is 1.5?

  1.    18
  2.    24
  3.    35
  4.    59
  5.    None of these
 Discuss Question
Answer: Option D. -> 59

 -  The 35th term is 59

To find the 35th term of an arithmetic sequence, we need to use the formula:

an = a1 + (n-1)d

where:

an = the nth term of the sequence

a1 = the first term of the sequence

d = the common difference between consecutive terms

n = the number of the term we want to find

In this case, we are given that the first term, a1, is 8 and the common difference, d, is 1.5. We want to find the 35th term, so we substitute these values into the formula and solve for an:

a35 = 8 + (35-1)1.5

a35 = 8 + 51

a35 = 59

Therefore, the 35th term of the arithmetic sequence with first term 8 and common difference 1.5 is 59.

To summarize, the solution is as follows:

We are given a first term of 8 and a common difference of 1.5.

We use the formula an = a1 + (n-1)d to find the 35th term.

Substituting the given values, we get a35 = 8 + (35-1)1.5.

Simplifying, we get a35 = 8 + 51 = 59.

Therefore, the answer is option D, 59.

Question 76.

Find the 100th term. if the first term is 4 and the common difference is 7?

  1.    120
  2.    150
  3.    697
  4.    800
  5.    None of these
 Discuss Question
Answer: Option C. -> 697
 -  The 100th term is 697
Question 77.

Find the number of terms in the series 8,11,14,....95

  1.    25
  2.    26
  3.    27
  4.    30
  5.    None of these
 Discuss Question
Answer: Option D. -> 30

 -  95 is the 30th term of the series

Explanation:

To find the number of terms in the series 8, 11, 14, ....95, we need to calculate the number of terms between 8 and 95 that follow the pattern 3n + 5.

A series of numbers can be represented in mathematical terms as a sequence of terms. In this case, the terms of the sequence are given by the formula:

t_n = 3n + 5

where t_n represents the nth term of the sequence and n is a positive integer.

To find the number of terms in the sequence, we need to find the value of n for which the nth term (t_n) is 95. Substituting 95 for t_n in the formula, we get:

95 = 3n + 5

Solving for n, we get:

n = (95 - 5)/3 = 30

Since n represents a positive integer, the number of terms in the sequence is equal to 30.

Thus, the correct option is D.

Question 78.

Find the number of terms in the series 11,6,1,...-54?

  1.    12
  2.    13
  3.    14
  4.    15
  5.    None of these
 Discuss Question
Answer: Option C. -> 14

 -  -54 is the 14th term in the series

To find the number of terms in the series 11, 6, 1,..., -54, we need to determine the common difference (d) and the nth term of the sequence (tn) first. Then, we can use the formula to find the number of terms (n) in the sequence.

  • Common difference (d):

The common difference is the difference between any two consecutive terms in an arithmetic sequence. To find the common difference, we can subtract any two consecutive terms:

d = 6 - 11 = -5 = 1 - 6 = -54 - (-5) = -49

The common difference is -5.

  • nth term of the sequence (tn):

The nth term of an arithmetic sequence can be found using the formula:

tn = a + (n-1)d

where a is the first term of the sequence and d is the common difference.

In this sequence, a = 11 and d = -5. Thus, the nth term of the sequence is:

tn = 11 + (n-1)(-5) = 11 - 5n + 5 = 16 - 5n

  • Number of terms (n):

To find the number of terms in the sequence, we need to determine the value of n such that tn = -54. Substituting tn and solving for n:

16 - 5n = -54

-5n = -70

n = 14

Therefore, there are 14 terms in the sequence.

Answer: Option C (14)

To summarize:

  • The common difference is -5.
  • The nth term of the sequence is tn = 16 - 5n.
  • The number of terms is 14, as tn = -54 when n = 14.

If you think the solution is wrong then please provide your own solution below in the comments section .

Question 79.

Find the number of terms in the series 2,3.5,5,...62 ?

  1.    41
  2.    42
  3.    50
  4.    62
  5.    None of these
 Discuss Question
Answer: Option A. -> 41

 -  In the series 62 is the 41st term

The given series is an arithmetic progression (A.P.) with the first term 'a' = 2 and the common difference 'd' = 3.5 - 2 = 1.5.

To find the number of terms in the series, we need to determine the last term. We can use the formula for the nth term of an arithmetic progression to find the last term.

The formula for the nth term of an arithmetic progression is given by:

an = a + (n - 1) * d

where an is the nth term of the A.P., a is the first term, d is the common difference, and n is the number of terms.

We need to find the value of n for which the nth term is 62. So, we can write:

62 = 2 + (n - 1) * 1.5

59 = (n - 1) * 1.5

n - 1 = 59 / 1.5

n - 1 = 39.33

n ≈ 40.33

We got a non-integer value of n, which indicates that there are only 40 terms in the series up to 61. The 41st term would exceed 62.

Hence, the correct option is A (41).

To summarize, we used the following concepts/formulas:

  • Arithmetic Progression: A sequence of numbers in which the difference between any two consecutive terms is constant.
  • Formula for the nth term of an arithmetic progression: an = a + (n - 1) * d
  • Calculation of the number of terms in an arithmetic progression using the nth term and the first term.

If you think the solution is wrong then please provide your own solution below in the comments section .

Question 80.

Find the values of x in the Arithmetic series 3x+1,5x-1,5x+1,......

  1.    2
  2.    3
  3.    7
  4.    8
  5.    None of these
 Discuss Question
Answer: Option A. -> 2

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024