Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 55 of 55 pages
Question 541. If $$a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}}$$   and $$b = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}, $$   the value of $$\left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right)$$   is ?
  1.    $$\frac{3}{4}$$
  2.    $$\frac{4}{3}$$
  3.    $$\frac{3}{5}$$
  4.    $$\frac{5}{3}$$
 Discuss Question
Answer: Option B. -> $$\frac{4}{3}$$
$$\eqalign{
& {\text{ }}a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} \cr
& \,\,\,\,\,\, {\text{ = }}\frac{{\left( {\sqrt 5 + 1} \right)}}{{\left( {\sqrt 5 - 1} \right)}} \times \frac{{\left( {\sqrt 5 + 1} \right)}}{{\left( {\sqrt 5 + 1} \right)}} \cr
& \,\,\,\,\,\,\, = \frac{{{{\left( {\sqrt 5 + 1} \right)}^2}}}{{\left( {5 - 1} \right)}} \cr
& \,\,\,\,\,\,\, = \frac{{5 + 1 + 2\sqrt 5 }}{4} \cr
& \,\,\,\,\,\,\, = \left( {\frac{{3 + \sqrt 5 }}{2}} \right) \cr
& {\text{ }}b = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}} \cr
& \,\,\,\,\,\,\, = \frac{{\left( {\sqrt 5 - 1} \right)}}{{\left( {\sqrt 5 + 1} \right)}} \times \frac{{\left( {\sqrt 5 - 1} \right)}}{{\left( {\sqrt 5 - 1} \right)}} \cr
& \,\,\,\,\,\,\, = \frac{{{{\left( {\sqrt 5 - 1} \right)}^2}}}{{\left( {5 - 1} \right)}} \cr
& \,\,\,\,\,\,\, = \frac{{5 + 1 - 2\sqrt 5 }}{4} \cr
& \,\,\,\,\,\,\, = \left( {\frac{{3 - \sqrt 5 }}{2}} \right) \cr
& \,\,\,\,\,\,\, \therefore {a^2} + {b^2} \cr
& \,\,\,\,\,\,\, = {\left( {\frac{{3 + \sqrt 5 }}{2}} \right)^2} + {\left( {\frac{{3 - \sqrt 5 }}{2}} \right)^2} \cr
& \,\,\,\,\,\,\, = \frac{{{{\left( {3 + \sqrt 5 } \right)}^2}}}{4} + \frac{{{{\left( {3 - \sqrt 5 } \right)}^2}}}{4} \cr
& \,\,\,\,\,\,\, = \frac{{{{\left( {3 + \sqrt 5 } \right)}^2} + {{\left( {3 - \sqrt 5 } \right)}^2}}}{4} \cr
& \,\,\,\,\,\,\, = \frac{{9 + 2.3.\sqrt 5 + 5 + 9 - 2.3.\sqrt 5 + 5}}{4} \cr
& \,\,\,\,\,\,\, = \frac{{2\left( {9 + 5} \right)}}{4} \cr
& \,\,\,\,\,\,\, = \frac{{28}}{4} \cr
& \,\,\,\,\,\,\, = 7 \cr
& {\text{Also, }} \cr
& ab = \frac{{\left( {3 + \sqrt 5 } \right)}}{2} \times \frac{{\left( {3 - \sqrt 5 } \right)}}{2} \cr
& \,\,\,\,\,\,\, = \frac{{\left( {9 - 5} \right)}}{4} \cr
& \,\,\,\,\,\,\, = 1 \cr
& \,\,\,\,\,\,\, \therefore \left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right) \cr
& \,\,\,\,\,\,\, = \frac{{\left( {{a^2} + {b^2}} \right) + ab}}{{\left( {{a^2} + {b^2}} \right) - ab}} \cr
& \,\,\,\,\,\,\, = \frac{{7 + 1}}{{7 - 1}} \cr
& \,\,\,\,\,\,\, = \frac{8}{6} \cr
& \,\,\,\,\,\,\, = \frac{4}{3} \cr} $$
Question 542. One-fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of a river. Find the total number of camels ?
  1.    32
  2.    34
  3.    35
  4.    36
 Discuss Question
Answer: Option D. -> 36
Let the total number of camels be x
Then,
$$\eqalign{
& \Leftrightarrow x - \left( {\frac{x}{4} + 2\sqrt x } \right) = 15 \cr
& \Leftrightarrow \frac{{3x}}{4} - 2\sqrt x = 15 \cr
& \Leftrightarrow 3x - 8\sqrt x = 60 \cr
& \Leftrightarrow 8\sqrt x = 3x - 60 \cr
& \Leftrightarrow 64x = {\left( {3x - 60} \right)^2} \cr
& \Leftrightarrow 64x = 9{x^2} + 3600 - 360x \cr
& \Leftrightarrow 9{x^2} - 424x + 3600 = 0 \cr
& \Leftrightarrow 9{x^2} - 324x - 100x + 3600 = 0 \cr
& \Leftrightarrow 9x\left( {x - 36} \right) - 100\left( {x - 36} \right) = 0 \cr
& \Leftrightarrow \left( {x - 36} \right)\left( {9x - 100} \right) = 0 \cr
& \Leftrightarrow x = 36\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\because x \ne \frac{{100}}{9}} \right] \cr} $$
Question 543. Which smallest number must be added to 710 so that the sum is a perfect cube ?
  1.    11
  2.    19
  3.    21
  4.    29
 Discuss Question
Answer: Option B. -> 19
$$\eqalign{
& {\text{Required number to be added}} \cr
& = {9^3} - 710 \cr
& = 729 - 710 \cr
& = 19 \cr} $$
Question 544. Solved $$\root 4 \of {{{\left( {625} \right)}^3}} = ?$$
  1.    $$\root 3 \of {1875} $$
  2.    25
  3.    125
  4.    None of these
 Discuss Question
Answer: Option C. -> 125
$$\eqalign{
& {\text{Given,}} \cr
& = \root 4 \of {{{\left( {625} \right)}^3}} \cr
& = {\left( {625} \right)^{\frac{3}{4}}} \cr
& = {\left( {5 \times 5 \times 5 \times 5} \right)^{\frac{3}{4}}} \cr
& = {\left( {{5^4}} \right)^{\frac{3}{4}}} \cr
& = {5^3} \cr
& = 125 \cr} $$
Question 545. $$9{x^2} + 25 - 30x$$    can be expressed as the square of = ?
  1.    $$3{x^2} - 25$$
  2.    $$3x + 5$$
  3.    $$ - 3x - 5$$
  4.    $$3x - 5$$
 Discuss Question
Answer: Option D. -> $$3x - 5$$
$$\eqalign{
& {\text{We have to find}} \cr
& = \sqrt {9{x^2} + 25 - 30x} \cr} $$
 $$ = \sqrt {{{\left( {3x} \right)}^2} - 2.3x.5 + {{\left( { - 5} \right)}^2}} $$
  $$\,\,\,\,\,\,\,\left\{ {\because {a^2} - 2ab + {b^2} = {{\left( {a + b} \right)}^2}} \right\}$$
$$\eqalign{
& = \sqrt {{{\left( {3x - 5} \right)}^2}} \cr
& = 3x - 5 \cr} $$
Question 546. If $$\sqrt {33} = 5.745{\text{,}}$$   then which of the following values is approximately $$\sqrt {\frac{3}{{11}}} {\text{ ?}}$$
  1.    1
  2.    6.32
  3.    0.5223
  4.    2.035
 Discuss Question
Answer: Option C. -> 0.5223
$$\eqalign{
& = \sqrt {\frac{3}{{11}}} \cr
& = \sqrt {\frac{{3 \times 11}}{{11 \times 11}}} \cr
& = \frac{{\sqrt {33} }}{{11}} \cr
& = \frac{{5.745}}{{11}} \cr
& = 0.5223 \cr} $$
Question 547. If $$\sqrt y = 4x{\text{,}}$$   then $$\frac{{{x^2}}}{y}$$  is = ?
  1.    2
  2.    $$\frac{1}{{16}}$$
  3.    $$\frac{1}{4}$$
  4.    4
 Discuss Question
Answer: Option B. -> $$\frac{1}{{16}}$$
$$\eqalign{
& \Leftrightarrow \sqrt y = 4x \cr
& \Leftrightarrow y = {\left( {4x} \right)^2} \cr
& \Leftrightarrow y = 16{x^2} \cr
& \Leftrightarrow \frac{{{x^2}}}{y} = \frac{1}{{16}} \cr} $$

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024