Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 54 of 55 pages
Question 531. The least perfect square number divisible by 3, 4, 5, 6 and 8 is = ?
  1.    900
  2.    1200
  3.    2500
  4.    3600
 Discuss Question
Answer: Option D. -> 3600
L.C.M. of 3, 4, 5, 6, 8 is 120
Now 120 = 2 × 2 × 2 × 3 × 5
To make it a perfect square, it must be multiplied by 2 × 3 × 5
So, required number
$$\eqalign{
& = {2^2} \times {2^2} \times {3^2} \times {5^2} \cr
& = 3600 \cr} $$
Question 532. If $${\text{ }}2*3 = \sqrt {13} $$   and 3 * 4 = 5, then the value of 5 * 12 is ?
  1.    $$\sqrt {17} $$
  2.    $$\sqrt {29} $$
  3.    12
  4.    13
 Discuss Question
Answer: Option D. -> 13
$$\eqalign{
& {\text{Clearly, }}a*b = \sqrt {{a^2} + {b^2}} \cr
& \therefore 5*12 \cr
& = \sqrt {{5^2} + {{12}^2}} \cr
& = \sqrt {25 + 144} \cr
& = \sqrt {169} \cr
& = 13 \cr} $$
Question 533. Given $$\sqrt 5 = 2.2361,$$   $$\sqrt 3 = 1.7321{\text{,}}$$   then $$\frac{1}{{\sqrt 5 - \sqrt 3 }}$$   is equal to ?
  1.    1.98
  2.    1.984
  3.    1.9841
  4.    2
 Discuss Question
Answer: Option C. -> 1.9841
$$\eqalign{
& \Rightarrow \frac{1}{{\sqrt 5 - \sqrt 3 }} \cr
& = \frac{1}{{\sqrt 5 - \sqrt 3 }} \times \frac{{\left( {\sqrt 5 + \sqrt 3 } \right)}}{{\left( {\sqrt 5 + \sqrt 3 } \right)}} \cr
& = \frac{{\left( {\sqrt 5 + \sqrt 3 } \right)}}{{5 - 3}} \cr
& = \frac{{\left( {2.2361 + 1.7321} \right)}}{2} \cr
& = \frac{{3.9682}}{2} \cr
& = 1.9841{\text{ }} \cr} $$
Question 534. Given that $$\sqrt 3 = 1.732{\text{,}}$$   the value of $$\frac{{3 + \sqrt 6 }}{{5\sqrt 3 - 2\sqrt {12} - \sqrt {32} + \sqrt {50} }}$$      is ?
  1.    1.414
  2.    1.732
  3.    2.551
  4.    4.899
 Discuss Question
Answer: Option B. -> 1.732
$$\eqalign{
& {\text{Given expression,}} \cr
& = \frac{{3 + \sqrt 6 }}{{5\sqrt 3 - 2\sqrt {12} - \sqrt {32} + \sqrt {50} }} \cr
& = \frac{{3 + \sqrt 6 }}{{5\sqrt 3 - 4\sqrt 3 - 4\sqrt 2 + 5\sqrt 2 }} \cr
& = \frac{{\left( {3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)}} \cr
& = \frac{{\left( {3 + \sqrt 6 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)}} \times \frac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)}} \cr
& = \frac{{3\sqrt 3 - 3\sqrt 2 + 3\sqrt 2 - 2\sqrt 3 }}{{\left( {3 - 2} \right)}} \cr
& = \sqrt 3 \cr
& = 1.732 \cr} $$
Question 535. $$\frac{1}{{\left( {\sqrt 9 - \sqrt 8 } \right)}} \, - $$   $$\frac{1}{{\left( {\sqrt 8 - \sqrt 7 } \right)}} \, + $$   $$\frac{1}{{\left( {\sqrt 7 - \sqrt 6 } \right)}} \, - $$   $$\frac{1}{{\left( {\sqrt 6 - \sqrt 5 } \right)}} \, + $$   $$\frac{1}{{\left( {\sqrt 5 - \sqrt 4 } \right)}}$$   is equal to ?
  1.    0
  2.    $$\frac{1}{3}$$
  3.    1
  4.    5
 Discuss Question
Answer: Option D. -> 5
Given expression,
$$ = \frac{1}{{\left( {\sqrt 9 - \sqrt 8 } \right)}} \times \frac{{\left( {\sqrt 9 + \sqrt 8 } \right)}}{{\left( {\sqrt 9 + \sqrt 8 } \right)}}$$     $$ - \frac{1}{{\left( {\sqrt 8 - \sqrt 7 } \right)}}$$   $$ \times \frac{{\left( {\sqrt 8 + \sqrt 7 } \right)}}{{\left( {\sqrt 8 + \sqrt 7 } \right)}}$$   $$ + \frac{1}{{\left( {\sqrt 7 - \sqrt 6 } \right)}}$$   $$ \times \frac{{\left( {\sqrt 7 + \sqrt 6 } \right)}}{{\left( {\sqrt 7 + \sqrt 6 } \right)}}$$   $$ - \frac{1}{{\left( {\sqrt 6 - \sqrt 5 } \right)}}$$   $$ \times \frac{{\left( {\sqrt 6 + \sqrt 5 } \right)}}{{\left( {\sqrt 6 + \sqrt 5 } \right)}}$$   $$ + \frac{1}{{\left( {\sqrt 5 - \sqrt 4 } \right)}}$$   $$ \times \frac{{\left( {\sqrt 5 + \sqrt 4 } \right)}}{{\left( {\sqrt 5 + \sqrt 4 } \right)}}$$
$$ = \frac{{\left( {\sqrt 9 + \sqrt 8 } \right)}}{{\left( {9 - 8} \right)}} - \frac{{\left( {\sqrt 8 + \sqrt 7 } \right)}}{{\left( {8 - 7} \right)}}$$     $$ + \frac{{\left( {\sqrt 7 + \sqrt 6 } \right)}}{{\left( {7 - 6} \right)}}$$   $$ - \frac{{\left( {\sqrt 6 + \sqrt 5 } \right)}}{{\left( {6 - 5} \right)}}$$   $$ + \frac{{\left( {\sqrt 5 + \sqrt 4 } \right)}}{{\left( {5 - 4} \right)}}$$
$$ = \left( {\sqrt 9 + \sqrt 8 } \right) - \left( {\sqrt 8 + \sqrt 7 } \right)$$     $$ + \left( {\sqrt 7 + \sqrt 6 } \right)$$   $$ - \left( {\sqrt 6 + \sqrt 5 } \right)$$   $$ + \left( {\sqrt 5 + \sqrt 4 } \right)$$
$$ = \left( {\sqrt 9 + \sqrt 4 } \right)$$
$$ = 3 + 2$$
$$ = 5$$
Question 536. If $$\sqrt 2 = 1.414{\text{,}}$$   the square root of $$\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}$$   is nearest to = ?
  1.    0.172
  2.    0.414
  3.    0.586
  4.    1.414
 Discuss Question
Answer: Option B. -> 0.414
$$\eqalign{
& = \frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \cr
& = \frac{{\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 + 1} \right)}} \times \frac{{\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 - 1} \right)}} \cr
& = {\left( {\sqrt 2 - 1} \right)^2} \cr
& \therefore \sqrt {\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \cr
& = \left( {\sqrt 2 - 1} \right) \cr
& = \left( {1.414 - 1} \right) \cr
& = 0.414 \cr} $$
Question 537. Determined the value of $$\frac{1}{{\sqrt 1 + \sqrt 2 }}{\text{ + }}$$  $$\frac{1}{{\sqrt 2 + \sqrt 3 }}\, + $$   $$\frac{1}{{\sqrt 3 + \sqrt 4 }}\, + $$   $$...... + $$   $$\frac{1}{{\sqrt {120} + \sqrt {121} }}{\text{ = ?}}$$
  1.    8
  2.    10
  3.    $$\sqrt {120} $$
  4.    $$12\sqrt 2 $$
 Discuss Question
Answer: Option B. -> 10
Given expressing,
$$ = \frac{1}{{\sqrt 1 + \sqrt 2 }}{\text{ + }}\frac{1}{{\sqrt 2 + \sqrt 3 }}$$     $$ + \frac{1}{{\sqrt 3 + \sqrt 4 }}$$   $$ + ...... + $$   $$\frac{1}{{\sqrt {120} + \sqrt {121} }}$$
$$ = \frac{1}{{\sqrt 2 + \sqrt 1 }}{\text{ + }}\frac{1}{{\sqrt 3 + \sqrt 2 }}$$     $$ + \frac{1}{{\sqrt 4 + \sqrt 3 }}$$   $$ + ...... + $$   $$\frac{1}{{\sqrt {121} + \sqrt {120} }}$$
$$ = \frac{1}{{\sqrt 2 + \sqrt 1 }} \times $$   $$\frac{{\sqrt 2 - \sqrt 1 }}{{\sqrt 2 - \sqrt 1 }}{\text{ + }}$$   $$\frac{1}{{\sqrt 3 + \sqrt 2 }} \times $$   $$\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} + $$   $$\frac{1}{{\sqrt 4 + \sqrt 3 }} \times $$   $$\frac{{\sqrt 4 - \sqrt 3 }}{{\sqrt 4 - \sqrt 3 }} + $$   $$...... + $$   $$\frac{1}{{\sqrt {121} + \sqrt {120} }} \times $$   $$\frac{{\sqrt {121} - \sqrt {120} }}{{\sqrt {121} - \sqrt {120} }}$$
$$ = \frac{{\sqrt 2 - \sqrt 1 }}{{2 - 1}} + \frac{{\sqrt 3 - \sqrt 2 }}{{3 - 2}}$$     $$ + \frac{{\sqrt 4 - \sqrt 3 }}{{4 - 3}}$$   $$ + ...... + $$   $$\frac{{\sqrt {121} - \sqrt {120} }}{{121 - 120}}$$
$$ = \sqrt 2 - \sqrt 1 + \sqrt 3 - \sqrt 2 $$     $$ + \sqrt 4 - \sqrt 3 $$   $$ + ...... + $$   $$\sqrt {121} - \sqrt {120} $$
$$ = - 1 + \sqrt {121} $$
$$ = - 1 + 11$$
$$ = 10$$
Question 538. $$\left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)$$      simplifies to = ?
  1.    $$16 - \sqrt 3 $$
  2.    $$4 - \sqrt 3 $$
  3.    $$2 - \sqrt 3 $$
  4.    $$2 + \sqrt 3 $$
 Discuss Question
Answer: Option A. -> $$16 - \sqrt 3 $$
Given expression,
$$ = \frac{{\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)}} \times \frac{{\left( {2 + \sqrt 3 } \right)}}{{\left( {2 + \sqrt 3 } \right)}}$$     $$ + \frac{{\left( {2 - \sqrt 3 } \right)}}{{\left( {2 + \sqrt 3 } \right)}}$$   $$ \times \frac{{\left( {2 - \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)}}$$   $$ + \frac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)}}$$   $$ \times \frac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}}$$
$$ = \frac{{{{\left( {2 + \sqrt 3 } \right)}^2}}}{{\left( {4 - 3} \right)}} + \frac{{{{\left( {2 - \sqrt 3 } \right)}^2}}}{{\left( {4 - 3} \right)}}$$     $$ + \frac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {3 - 1} \right)}}$$
$$ = \left[ {{{\left( {2 + \sqrt 3 } \right)}^2} + {{\left( {2 - \sqrt 3 } \right)}^2}} \right]$$     $$ + \frac{{4 - 2\sqrt 3 }}{2}$$
$$ = 2\left( {4 + 3} \right) + 2 - \sqrt 3 $$
$$ = 16 - \sqrt 3 $$
Question 539. If $$a = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }},$$   $$b = \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$$   then the value of $${a^2} + {b^2}$$   would be = ?
  1.    10
  2.    98
  3.    99
  4.    100
 Discuss Question
Answer: Option B. -> 98
$$\eqalign{
& \because a = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} \cr
& = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} \times \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} \cr
& = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}} \cr
& = \frac{{3 + 2 + 2\sqrt 6 }}{{3 - 2}} \cr
& = 5 + 2\sqrt 6 \cr
& \because b = \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} \cr
& {\text{ = }}\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} \times \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} \cr
& {\text{ = }}\frac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}} \cr
& = \frac{{3 + 2 - 2\sqrt 6 }}{{3 - 2}} \cr
& = 5 - 2\sqrt 6 \cr
& \therefore {\text{ }}{a^2} + {b^2} \cr
& = {\left( {5 + 2\sqrt 6 } \right)^2} + {\left( {5 - 2\sqrt 6 } \right)^2} \cr
& = 2\left[ {{{\left( 5 \right)}^2} + {{\left( {2\sqrt 6 } \right)}^2}} \right] \cr
& = 2\left( {25 + 24} \right) \cr
& = 2 \times 49 \cr
& = 98 \cr} $$
Question 540. If $$x = 3 + \sqrt 8 ,$$   then $${x^2} + \frac{1}{{{x^2}}}$$  is equal to = ?
  1.    30
  2.    34
  3.    36
  4.    38
 Discuss Question
Answer: Option B. -> 34
$$\eqalign{
& \because x = 3 + \sqrt 8 \cr
& \Rightarrow {x^2} = {\left( {3 + \sqrt 8 } \right)^2} \cr
& \Rightarrow {x^2} = {3^2} + {\left( {\sqrt 8 } \right)^2} + 2 \times 3 \times \sqrt 8 \cr
& \Rightarrow {x^2} = 9 + 8 + 6\sqrt 8 \cr
& \Rightarrow {x^2} = 17 + 12\sqrt 2 \cr} $$
$$\therefore {x^2} + \frac{1}{{{x^2}}}$$
$$ = \left( {17 + 12\sqrt 2 } \right)$$   $$ + \frac{1}{{\left( {17 + 12\sqrt 2 } \right)}}$$   $$ \times \frac{{\left( {17 - 12\sqrt 2 } \right)}}{{\left( {17 - 12\sqrt 2 } \right)}}$$
$$\eqalign{
& = \left( {17 + 12\sqrt 2 } \right) + \frac{{\left( {17 - 12\sqrt 2 } \right)}}{{289 - 288}} \cr
& = \left( {17 + 12\sqrt 2 } \right) + \left( {17 - 12\sqrt 2 } \right) \cr
& = 17 + 17 \cr
& = 34 \cr} $$

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024