Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 53 of 55 pages
Question 521. $${1.5^2} \times \sqrt {0.0225} = ?$$
  1.    0.0375
  2.    0.3375
  3.    3.275
  4.    32.75
 Discuss Question
Answer: Option B. -> 0.3375
$$\eqalign{
& = {1.5^2} \times \sqrt {0.0225} \cr
& = {1.5^2} \times \sqrt {\frac{{225}}{{10000}}} \cr
& = 2.25 \times \frac{{15}}{{100}} \cr
& = 2.25 \times 0.15 \cr
& = 0.3375 \cr} $$
Question 522. The value of $$\sqrt {0.01} {\text{ + }}$$ $$\sqrt {0.81} {\text{ + }}$$ $$\sqrt {1.21} {\text{ + }}$$ $$\sqrt {0.0009} $$   is = ?
  1.    2.03
  2.    2.1
  3.    2.11
  4.    2.13
 Discuss Question
Answer: Option D. -> 2.13
Given expression,
$$ = \sqrt {\frac{1}{{100}}} + \sqrt {\frac{{81}}{{100}}} + \sqrt {\frac{{121}}{{100}}} + $$      $$\sqrt {\frac{9}{{10000}}} $$
$$\eqalign{
& = \frac{1}{{10}} + \frac{9}{{10}} + \frac{{11}}{{10}} + \frac{3}{{100}} \cr
& = 0.1 + 0.9 + 1.1 + 0.03 \cr
& = 2.13 \cr} $$
Question 523. $$\sqrt {1.5625} = ?$$
  1.    1.05
  2.    1.25
  3.    1.45
  4.    1.55
 Discuss Question
Answer: Option B. -> 1.25
$$\eqalign{
& \,\,\,\,\,\,\,1|\overline 1 \,.\,\overline {56} \,\,\overline {25} \,(1.25 \cr
& \,\,\,\,\,\,\,\,\,\,|1 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& \,\,\,22|\,\,\,\,\,\,56 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,44 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& 245\,|\,\,\,\,\,\,\,12\,25 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,12\,25 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\text{x} \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& \therefore \sqrt {1.5625} = 1.25 \cr} $$
Question 524. Given that $$\sqrt {13} = 3.605$$   and $$\sqrt {130} = 11.40{\text{,}}$$   find the value of $$\sqrt {1.30} $$  $$ + $$ $$\sqrt {1300} $$  $$ + $$ $$\sqrt {0.0130} $$   = ?
  1.    36.164
  2.    36.304
  3.    37.164
  4.    37.304
 Discuss Question
Answer: Option D. -> 37.304
$$\eqalign{
& {\text{Given expression,}} \cr
& \sqrt {1.30} + \sqrt {1300} + \sqrt {0.0130} \cr
& = \sqrt {\frac{{130}}{{100}}} + \sqrt {13 \times 100} + \sqrt {\frac{{130}}{{10000}}} \cr
& = \frac{{\sqrt {130} }}{{10}} + \sqrt {13} \times 10 + \frac{{\sqrt {130} }}{{100}} \cr
& = \frac{{11.40}}{{10}} + 3.605 \times 10 + \frac{{11.40}}{{100}} \cr
& = 1.14 + 36.05 + 0.114 \cr
& = 37.304 \cr} $$
Question 525. If $$a = \frac{{\sqrt 3 }}{2}{\text{,}}$$   then $$\sqrt {1 + a} + \sqrt {1 - a} = ?$$
  1.    $$\left( {2 - \sqrt 3 } \right)$$
  2.    $$\left( {2 + \sqrt 3 } \right)$$
  3.    $$\left( {\frac{{\sqrt 3 }}{2}} \right)$$
  4.    $$\sqrt 3 $$
 Discuss Question
Answer: Option D. -> $$\sqrt 3 $$
$$\eqalign{
& a = \frac{{\sqrt 3 }}{2}{\text{ (given)}} \cr
& \therefore \sqrt {1 + a} + \sqrt {1 - a} \cr
& = \sqrt {1 + \frac{{\sqrt 3 }}{2}} + \sqrt {1 - \frac{{\sqrt 3 }}{2}} \cr
& = \sqrt {\frac{{2 + \sqrt 3 }}{2}} + \sqrt {\frac{{2 - \sqrt 3 }}{2}} \cr
& = \sqrt {\frac{{2\left( {2 + \sqrt 3 } \right)}}{4}} + \sqrt {\frac{{2\left( {2 - \sqrt 3 } \right)}}{4}} \cr
& = \sqrt {\frac{{4 + 2\sqrt 3 }}{4}} + \sqrt {\frac{{4 - 2\sqrt 3 }}{4}} \cr} $$
$$ = \sqrt {\frac{{3 + 1 + 2 \times \sqrt 3 \times 1}}{2}} + $$     $$\sqrt {\frac{{3 + 1 - 2 \times \sqrt 3 \times 1}}{2}} $$     \[\because \left\{ \begin{gathered}
{\left( {\sqrt 3 } \right)^2} + {\left( 1 \right)^2} - 2.\sqrt 3 .1 = {\left( {\sqrt 3 - 1} \right)^2} \hfill \\
{\left( {\sqrt 3 } \right)^2} + {\left( 1 \right)^2} + 2.\sqrt 3 .1 = {\left( {\sqrt 3 + 1} \right)^2} \hfill \\
{a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2} \hfill \\
{a^2} + {b^2} - 2ab = {\left( {a + b} \right)^2} \hfill \\
\end{gathered} \right\}\]
$$\eqalign{
& = \sqrt {\frac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{2}} + \sqrt {\frac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{2}} \cr
& = \frac{{\sqrt 3 + 1 + \sqrt 3 - 1}}{2} \cr
& = \frac{{2\sqrt 3 }}{2} \cr
& = \sqrt 3 \cr} $$
Question 526. The square root of $$\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}}$$ $${\text{ + }}$$$$\left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]$$    is = ?
  1.    1
  2.    2
  3.    3
  4.    4
 Discuss Question
Answer: Option B. -> 2
$$\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}}$$ $${\text{ + }}$$$$\left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]$$
$$ = \frac{{{{\left( {0.75} \right)}^2} \times 0.75}}{{0.25}}$$   $${\text{ + }}$$ $$\left[ {0.75 + 0.5625 + 1} \right]$$
$$ = 0.5625 \times 3 \,\, + $$   $$\left[ {0.75 + 0.5625 + 1} \right]$$
$$\eqalign{
& = 1.6875 + 2.3125 \cr
& = 4 \cr} $$
Square root of 4 = 2
Question 527. What is $$\frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 2\sqrt {20} - \sqrt {32} + \sqrt {50} }}$$      equal to ?
  1.    5
  2.    $$5\sqrt 2 $$
  3.    $$5\sqrt 5 $$
  4.    $$\sqrt 5 $$
 Discuss Question
Answer: Option D. -> $$\sqrt 5 $$
$$\eqalign{
& {\text{Given,}} \cr
& \frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 2\sqrt {20} - \sqrt {32} + \sqrt {50} }}{\text{ }} \cr
& = \frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 2 \times 2\sqrt 5 - 2 \times 2\sqrt 2 + 5\sqrt 2 }} \cr
& = \frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 4\sqrt 5 - 4\sqrt 2 + 5\sqrt 2 }} \cr
& = \frac{{5 + \sqrt {10} }}{{\sqrt 5 + \sqrt 2 }} \cr
& = \frac{{\sqrt 5 \left( {\sqrt 5 + \sqrt 2 } \right)}}{{\sqrt 5 + \sqrt 2 }} \cr
& = \sqrt 5 \cr} $$
Question 528. If $$\sqrt 6 = 2.449{\text{,}}$$   then the value of $$\frac{{3\sqrt 2 }}{{2\sqrt 3 }}$$   is = ?
  1.    0.6122
  2.    0.8163
  3.    1.223
  4.    1.2245
 Discuss Question
Answer: Option D. -> 1.2245
$$\eqalign{
& = \frac{{3\sqrt 2 }}{{2\sqrt 3 }} \cr
& = \frac{{3\sqrt 2 }}{{2\sqrt 3 }} \times \frac{{\sqrt 3 }}{{\sqrt 3 }} \cr
& = \frac{{3\sqrt 6 }}{{2 \times 3}} \cr
& = \frac{{\sqrt 6 }}{2} \cr
& = \frac{{2.449}}{2} \cr
& = 1.2245 \cr} $$
Question 529. If $$\sqrt 5 = 2.236{\text{,}}$$   then the value of $$\frac{{\sqrt 5 }}{2} \, - $$  $$\frac{{10}}{{\sqrt 5 }} \, + $$  $$\sqrt {125} $$  is equal to = ?
  1.    5.59
  2.    7.826
  3.    8.944
  4.    10.062
 Discuss Question
Answer: Option B. -> 7.826
$$\eqalign{
& = \frac{{\sqrt 5 }}{2} - \frac{{10}}{{\sqrt 5 }} + \sqrt {125} \cr
& = \frac{{{{\left( {\sqrt 5 } \right)}^2} - 20 + 2\sqrt 5 \times 5\sqrt 5 }}{{2\sqrt 5 }} \cr
& = \frac{{5 - 20 + 50}}{{2\sqrt 5 }} \cr
& = \frac{{35}}{{2\sqrt 5 }} \times \frac{{\sqrt 5 }}{{\sqrt 5 }} \cr
& = \frac{{35\sqrt 5 }}{{10}} \cr
& = \frac{7}{2} \times 2.236 \cr
& = 7 \times 1.118 \cr
& = 7.826 \cr} $$
Question 530. The least number by which 294 must be multiplied to make it a perfect square, is = ?
  1.    2
  2.    3
  3.    6
  4.    24
 Discuss Question
Answer: Option C. -> 6
294 = 7 × 7 × 2 × 3
To make it a perfect square, it must be multiplied by 2 × 3 i.e.,6
∴ Required number = 6

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024