Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 51 of 55 pages
Question 501. The square root of 123454321 is = ?
  1.    111111
  2.    12341
  3.    11111
  4.    11211
 Discuss Question
Answer: Option C. -> 11111
$$\therefore \sqrt {123454321} = 11111$$
Question 502. $$\sqrt {\sqrt {17956} + \sqrt {24025} } = ?$$
  1.    19
  2.    155
  3.    256
  4.    289
  5.    None of these
 Discuss Question
Answer: Option E. -> None of these
$$\eqalign{
& \sqrt {\sqrt {17956} + \sqrt {24025} } \cr
& = \sqrt {134 + 155} \cr
& = \sqrt {289} \cr
& = 17 \cr} $$
Question 503. One-fourth of the sum of prime numbers, greater than 4 but less than 16, is the square of = ?
  1.    3
  2.    4
  3.    5
  4.    7
 Discuss Question
Answer: Option A. -> 3
Sum of prime numbers greater than 4 but less than 16
$$\eqalign{
& = \left( {5 + 7 + 11 + 13} \right) \cr
& = 36 \cr
& \therefore \frac{1}{4} \times 36 \cr
& = 9 \cr
& = {3^2} \cr} $$
Question 504. The number of digits in the square root of 625685746009 is = ?
  1.    4
  2.    5
  3.    6
  4.    7
 Discuss Question
Answer: Option C. -> 6
The number of digits of the square root of a perfect square number of n digits is
$$\eqalign{
& {\text{(i)}}\frac{n}{2}{\text{, if n is even}} \cr
& {\text{(ii)}}\frac{{n + 1}}{2}{\text{, if n is odd}} \cr
& {\text{Here, }}n = 12 \cr
& {\text{So, required number of digits}} \cr
& = \frac{n}{2} \cr
& = \frac{{12}}{2} \cr
& = 6{\text{ }} \cr} $$
Question 505. What should come in place of both the question marks in the equation ?
$$\frac{?}{{\sqrt {128} }} = \frac{{\sqrt {162} }}{?}$$
  1.    12
  2.    14
  3.    144
  4.    196
 Discuss Question
Answer: Option A. -> 12
$$\eqalign{
& {\text{Let,}} \cr
& {\text{ }}\frac{x}{{\sqrt {128} }} = \frac{{\sqrt {162} }}{x} \cr
& {\text{Then,}} \cr
& \Leftrightarrow {x^2} = \sqrt {128 \times 162} \cr
& \Leftrightarrow {x^2} = \sqrt {64 \times 2 \times 18 \times 9} \cr
& \Leftrightarrow {x^2} = \sqrt {{8^2} \times {6^2} \times {3^2}} \cr
& \Leftrightarrow {x^2} = 8 \times 6 \times 3 \cr
& \Leftrightarrow {x^2} = 144 \cr
& \Leftrightarrow x = \sqrt {144} \cr
& \Leftrightarrow x = 12 \cr} $$
Question 506. Which number should replace both the question marks in the following equation ?
$$\frac{?}{{1776}} = \frac{{111}}{?}$$
  1.    343
  2.    414
  3.    644
  4.    543
  5.    None of these
 Discuss Question
Answer: Option E. -> None of these
$$\eqalign{
& {\text{Let }}\frac{x}{{1776}} = \frac{{111}}{x} \cr
& {\text{Then, }} \cr
& \Leftrightarrow {x^2} = 111 \times 1776 \cr
& \Leftrightarrow {x^2} = 111 \times 111 \times 16 \cr
& \Leftrightarrow x = \sqrt {{{\left( {111} \right)}^2} \times {{\left( 4 \right)}^2}} \cr
& \Leftrightarrow x = 111 \times 4 \cr
& \Leftrightarrow x = 444 \cr} $$
Question 507. Which number can replace both the question marks in the equation ?
$$\frac{{4\frac{1}{2}}}{?} = \frac{?}{{32}}$$
  1.    1
  2.    7
  3.    $$7\frac{1}{2}$$
  4.    None of these
 Discuss Question
Answer: Option D. -> None of these
$$\eqalign{
& {\text{Let,}} \cr
& {\text{ }}\frac{{4\frac{1}{2}}}{x} = \frac{x}{{32}} \cr
& {\text{Then,}} \cr
& \Leftrightarrow {x^2} = 32 \times \frac{9}{2} \cr
& \Leftrightarrow {x^2} = 144 \cr
& \Leftrightarrow x = \sqrt {144} \cr
& \Leftrightarrow x = 12 \cr} $$
Question 508. If $$\frac{{52}}{x} = \sqrt {\frac{{169}}{{289}}} {\text{,}}$$   the value of x is = ?
  1.    52
  2.    58
  3.    62
  4.    68
 Discuss Question
Answer: Option D. -> 68
$$\eqalign{
& \Leftrightarrow \frac{{52}}{x}{\text{ = }}\sqrt {\frac{{169}}{{289}}} \cr
& \Leftrightarrow \frac{{52}}{x} = \frac{{13}}{{17}} \cr
& \Leftrightarrow x = \left( {\frac{{52 \times 17}}{{13}}} \right) \cr
& \Leftrightarrow x = 68 \cr} $$
Question 509. For what value of * the statement $$\left( {\frac{*}{{15}}} \right)$$ $$\left( {\frac{*}{{135}}} \right)$$  = 1 is true ?
  1.    15
  2.    25
  3.    35
  4.    45
 Discuss Question
Answer: Option D. -> 45
$$\eqalign{
& {\text{Method 1:}} \cr
& {\text{Let the missing number be }}x \cr
& {\text{Then, }} \cr
& \Leftrightarrow {x^2} = 15 \times 135 \cr
& \Leftrightarrow x = \sqrt {15 \times \left(15 \times 9 \right)} \cr
& \Leftrightarrow x = \sqrt {{{15}^2} \times {3^2}} \cr
& \Leftrightarrow x = 15 \times 3 \cr
& \Leftrightarrow x = 45 \cr
& \cr
& {\text{Method 2:}} \cr
& {\text{Let the missing number be }}x \cr
& {\text{Then, }} \cr
& \Leftrightarrow {x^2} = 15 \times 135 \cr
& \Leftrightarrow {x^2} = 2025 \cr
& \Leftrightarrow x = \sqrt {{2025} } \cr
& \Leftrightarrow x = 45 \cr} $$
Question 510. $$\sqrt {176 + \sqrt {2401} } $$    is equal to = ?
  1.    14
  2.    15
  3.    18
  4.    24
 Discuss Question
Answer: Option B. -> 15
$$\eqalign{
& {\text{Given expression,}} \cr
& = \sqrt {176 + 49} \cr
& = \sqrt {225} \cr
& = 15 \cr} $$

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024