Answer: Option A. -> 0.50
Given expression,
$$ = \sqrt {\frac{{11025}}{{100}}} \times \sqrt {\frac{1}{{100}}} \, \div \,$$ $$\sqrt {\frac{{25}}{{10000}}} \, - \,$$ $$\,\sqrt {\frac{{42025}}{{100}}} $$
$$\eqalign{
& = \frac{{105}}{{10}} \times \frac{1}{{10}} \div \frac{5}{{100}} - \frac{{205}}{{10}} \cr
& = \frac{{105}}{{100}} \times \frac{{100}}{5} - \frac{{205}}{{10}} \cr
& = 21 - \frac{{205}}{{10}} \cr
& = \frac{{210 - 205}}{{10}} \cr
& = \frac{5}{{10}} \cr
& = \frac{1}{2} \cr
& = 0.50 \cr} $$