Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 49 of 55 pages
Question 481. If $$3\sqrt 5 + \sqrt {125} = 17.88{\text{,}}$$     then what will be the value of $$\sqrt {80} $$  $$ + $$ $$6\sqrt 5 $$  = ?
  1.    13.41
  2.    20.46
  3.    21.66
  4.    22.35
 Discuss Question
Answer: Option D. -> 22.35
$$\eqalign{
& \Rightarrow 3\sqrt 5 + \sqrt {125} = 17.88 \cr
& \Rightarrow {\text{ }}3\sqrt 5 + \sqrt {25 \times 5} = 17.88 \cr
& \Rightarrow {\text{ }}3\sqrt 5 + 5\sqrt 5 = 17.88 \cr
& \Rightarrow {\text{ }}8\sqrt 5 = 17.88 \cr
& \Rightarrow \sqrt 5 = 2.235 \cr
& \therefore \sqrt {80} + 6\sqrt 5 \cr
& = \sqrt {16 \times 5} + 6\sqrt 5 \cr
& = 4\sqrt 5 + 6\sqrt 5 \cr
& = 10\sqrt 5 \cr
& = \left( {10 \times 2.235} \right) \cr
& = 22.35 \cr} $$
Question 482. Given $$\sqrt 2 = 1.414.$$   Then the value of $$\sqrt 8 $$  $$ + $$ $$2\sqrt {32} $$  $$ - $$ $$3\sqrt {128} $$  $$ + $$ $$4\sqrt {50} $$   is = ?
  1.    8.426
  2.    8.484
  3.    8.526
  4.    8.876
 Discuss Question
Answer: Option B. -> 8.484
Given expression,
$$\sqrt {4 \times 2} + 2\sqrt {16 \times 2} - 3\sqrt {64 \times 2} $$       $$ + $$ $$4\sqrt {25 \times 2} $$
$$\eqalign{
& = 2\sqrt 2 + 8\sqrt 2 - 24\sqrt 2 + 20\sqrt 2 \cr
& = 6\sqrt 2 \cr
& = 6 \times 1.414 \cr
& = 8.484 \cr} $$
Question 483. The approximate value of $$\frac{{3\sqrt {12} }}{{2\sqrt {28} }}$$  $$ \div $$ $$\frac{{2\sqrt {21} }}{{\sqrt {98} }}$$   is ?
  1.    1.0605
  2.    1.0727
  3.    1.6007
  4.    1.6026
 Discuss Question
Answer: Option A. -> 1.0605
$$\eqalign{
& {\text{Given expression,}} \cr
& = \frac{{3\sqrt {12} }}{{2\sqrt {28} }} \times \frac{{\sqrt {98} }}{{2\sqrt {21} }} \cr
& = \frac{{3\sqrt {4 \times 3} }}{{2\sqrt {4 \times 7} }} \times \frac{{\sqrt {49 \times 2} }}{{2\sqrt {21} }} \cr
& = \frac{{6\sqrt 3 }}{{4\sqrt 7 }} \times \frac{{7\sqrt 2 }}{{2\sqrt {21} }} \cr
& = \frac{{21\sqrt 6 }}{{4\sqrt {7 \times 21} }} \cr
& = \frac{{21\sqrt 6 }}{{28\sqrt 3 }} \cr
& = \frac{3}{4}\sqrt 2 \cr
& = \frac{3}{4} \times 1.414 \cr
& = 3 \times 0.3535 \cr
& = 1.0605 \cr} $$
Question 484. $$\sqrt {110.25} \times \sqrt {0.01} \, \div $$    $$\sqrt {0.0025} $$   $$ - $$ $$\sqrt {420.25} $$  equals ?
  1.    0.50
  2.    0.64
  3.    0.73
  4.    0.75
 Discuss Question
Answer: Option A. -> 0.50
Given expression,
$$ = \sqrt {\frac{{11025}}{{100}}} \times \sqrt {\frac{1}{{100}}} \, \div \,$$    $$\sqrt {\frac{{25}}{{10000}}} \, - \,$$ $$\,\sqrt {\frac{{42025}}{{100}}} $$
$$\eqalign{
& = \frac{{105}}{{10}} \times \frac{1}{{10}} \div \frac{5}{{100}} - \frac{{205}}{{10}} \cr
& = \frac{{105}}{{100}} \times \frac{{100}}{5} - \frac{{205}}{{10}} \cr
& = 21 - \frac{{205}}{{10}} \cr
& = \frac{{210 - 205}}{{10}} \cr
& = \frac{5}{{10}} \cr
& = \frac{1}{2} \cr
& = 0.50 \cr} $$
Question 485. $$\sqrt {\frac{{0.081 \times 0.484}}{{0.0064 \times 6.25}}} {\text{ }}$$   is equal to ?
  1.    0.9
  2.    0.99
  3.    9
  4.    99
 Discuss Question
Answer: Option B. -> 0.99
Sum of decimal places in the numerator and denominator under the radical sign being the same, we remove the decimal.
∴ Given expression,
$$\eqalign{
& = \sqrt {\frac{{0.081 \times 0.484}}{{0.0064 \times 6.25}}} \cr
& = \sqrt {\frac{{81 \times 484}}{{64 \times 625}}} \cr
& = \frac{{9 \times 22}}{{8 \times 25}} \cr
& = 0.99 \cr} $$
Question 486. The square root of $$\left( {7 + 3\sqrt 5 } \right)$$  $$\left( {7 - 3\sqrt 5 } \right)$$   is ?
  1.    $$\sqrt 5 $$
  2.    2
  3.    4
  4.    $$3\sqrt 5 $$
 Discuss Question
Answer: Option B. -> 2
$$\eqalign{
& = \sqrt {\left( {7 + 3\sqrt 5 } \right)\left( {7 - 3\sqrt 5 } \right)} \cr
& = \sqrt {{{\left( 7 \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}} \cr
& = \sqrt {49 - 45} \cr
& = \sqrt 4 \cr
& = 2 \cr} $$
Question 487. $${\left( {\sqrt 3 - \frac{1}{{\sqrt 3 }}} \right)^2}$$   simplifies to ?
  1.    $$\frac{3}{4}$$
  2.    $$\frac{4}{{\sqrt 3 }}$$
  3.    $$\frac{4}{3}$$
  4.    None of these
 Discuss Question
Answer: Option C. -> $$\frac{4}{3}$$
$$\eqalign{
& = {\left( {\sqrt 3 - \frac{1}{{\sqrt 3 }}} \right)^2} \cr
& = {\left( {\sqrt 3 } \right)^2} + {\left( {\frac{1}{{\sqrt 3 }}} \right)^2} - 2 \times \sqrt 3 \times \frac{1}{{\sqrt 3 }} \cr
& = 3 + \frac{1}{3} - 2 \cr
& = 1 + \frac{1}{3} \cr
& = \frac{4}{3} \cr} $$
Question 488. If $$a = 0.1039{\text{,}}$$   then the value of $$\sqrt {4{a^2} - 4a + 1} $$    $$ + $$ $$3a$$  is ?
  1.    0.1039
  2.    0.2078
  3.    1.1039
  4.    2.1039
 Discuss Question
Answer: Option C. -> 1.1039
$$\eqalign{
& = \sqrt {4{a^2} - 4a + 1} + 3a \cr
& = \sqrt {{{\left( 1 \right)}^2} + {{\left( {2a} \right)}^2} - 2 \times 1 \times 2a} + 3a \cr
& = \sqrt {{{\left( {1 - 2a} \right)}^2}} + 3a \cr
& = \left( {1 - 2a} \right) + 3a \cr
& = \left( {1 + a} \right) \cr
& = \left( {1 + 0.1039} \right) \cr
& = 1.1039 \cr} $$
Question 489. The value of $$\sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {0.003} \right)}^2} + {{\left( {0.021} \right)}^2} + {{\left( {0.0065} \right)}^2}}}} $$       is ?
  1.    0.1
  2.    10
  3.    $${10^2}$$
  4.    $${10^3}$$
 Discuss Question
Answer: Option B. -> 10
$$\eqalign{
& {\text{Given expression,}} \cr
& = \sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {\frac{{0.03}}{{10}}} \right)}^2} + {{\left( {\frac{{0.21}}{{10}}} \right)}^2} + {{\left( {\frac{{0.065}}{{10}}} \right)}^2}}}} \cr
& = \sqrt {\frac{{100\left[ {{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}} \right]}}{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}} \cr
& = \sqrt {100} \cr
& = 10 \cr} $$
Question 490. If a = 0.1039, then the value of $$\sqrt {4{a^2} - 4a + 1} + 3a$$     is:
  1.    0.1039
  2.    0.2078
  3.    1.1039
  4.    2.1039
 Discuss Question
Answer: Option C. -> 1.1039
$$\eqalign{
& \sqrt {4{a^2} - 4a + 1} + 3a \cr
& = \sqrt {{{\left( 1 \right)}^2} + {{\left( {2a} \right)}^2} - 2 \times 1 \times 2a} + 3a \cr
& = \sqrt {{{\left( {1 - 2a} \right)}^2}} + 3a \cr
& = \left( {1 - 2a} \right) + 3a \cr
& = \left( {1 + a} \right) \cr
& = \left( {1 + 0.1039} \right) \cr
& = 1.1039 \cr} $$

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024