Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 45 of 55 pages
Question 441. The number $${\text{2}}{{\text{5}}^{64}} \times {64^{25}}$$   is the square of a natural number n. The sum of the digits of n is = ?
  1.    7
  2.    14
  3.    21
  4.    28
 Discuss Question
Answer: Option B. -> 14
$$\eqalign{
& \Leftrightarrow {{\text{n}}^2} = {\left( {{\text{25}}} \right)^{64}} \times {\left( {64} \right)^{25}} \cr
& \Leftrightarrow {{\text{n}}^2} = {\left( {{{\text{5}}^2}} \right)^{64}} \times {\left( {{2^6}} \right)^{25}} \cr
& \Leftrightarrow {{\text{n}}^2} = {5^{128}} \times {2^{150}} \cr
& \Leftrightarrow {{\text{n}}^2} = {5^{128}} \times {2^{128}} \times {2^{22}} \cr
& \Leftrightarrow n = {5^{64}} \times {2^{64}} \times {2^{11}} \cr
& \Leftrightarrow n = {\left( {5 \times 2} \right)^{64}} \times {2^{11}} \cr
& \Leftrightarrow n = {10^{64}} \times 2048 \cr} $$
∴ Sum of digits of n
= 2 + 0 + 4 + 8
= 14
Question 442. If $$\sqrt x \div \sqrt {441} = 0.02{\text{,}}$$    then the value of x is ?
  1.    0.1764
  2.    1.764
  3.    1.64
  4.    2.64
 Discuss Question
Answer: Option A. -> 0.1764
$$\eqalign{
& \Leftrightarrow \frac{{\sqrt x }}{{\sqrt {441} }} = 0.02 \cr
& \Leftrightarrow \frac{{\sqrt x }}{{21}} = 0.02 \cr
& \Leftrightarrow \sqrt x = 0.02 \times 21 \cr
& \Leftrightarrow \sqrt x = 0.42 \cr
& \Leftrightarrow x = {\left( {0.42} \right)^2} \cr
& \Leftrightarrow x = 0.1764{\text{ }} \cr} $$
Question 443. If $$\sqrt {{3^n}} = 729$$  , then the value of n is ?
  1.    6
  2.    8
  3.    10
  4.    12
 Discuss Question
Answer: Option D. -> 12
$$\eqalign{
& \Leftrightarrow \sqrt {{3^n}} = 729 \cr
& \Leftrightarrow \sqrt {{3^n}} = {3^6} \cr
& \Leftrightarrow {\left( {\sqrt {{3^n}} } \right)^2} = {\left( {{3^6}} \right)^2} \cr
& \Leftrightarrow {3^n} = {3^{12}} \cr
& \Leftrightarrow n = 12 \cr} $$
Question 444. If $$0.13 \div {p^2} = 13{\text{,}}$$   then p equals = ?
  1.    0.01
  2.    0.1
  3.    10
  4.    100
 Discuss Question
Answer: Option B. -> 0.1
$$\eqalign{
& \Leftrightarrow \frac{{0.13}}{{{p^2}}} = 13 \cr
& \Leftrightarrow {p^2} = \frac{{0.13}}{{13}} \cr
& \Leftrightarrow {p^2} = \frac{1}{{100}} \cr
& \Leftrightarrow p = \sqrt {\frac{1}{{100}}} \cr
& \Leftrightarrow p = \frac{1}{{10}} \cr
& \Leftrightarrow p = 0.1 \cr} $$
Question 445. The digit in the unit's place in the square root of 15876 is = ?
  1.    2
  2.    4
  3.    6
  4.    8
 Discuss Question
Answer: Option C. -> 6
$$\eqalign{
& \,\,\,\,\,\,1|\overline 1 \,\,\overline {58} \,\,\overline {76} \,(126 \cr
& \,\,\,\,\,\,\,\,\,|1 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& \,\,22|\,\,\,\,\,\,58 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,44 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& 246\,|\,\,\,\,\,\,\,14\,76 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,14\,76 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,x \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& \therefore \sqrt {15876} = 126 \cr} $$
Question 446. While solving a mathematical problem, Samidha squared a number and then subtracted 25 from it rather than the required i.e., first subtracting 25 from the number and then squaring it. But she got the right answer. What was the given number ?
  1.    13
  2.    38
  3.    48
  4.    Cannot be determined
  5.    None of these
 Discuss Question
Answer: Option A. -> 13
$$\eqalign{
& {\text{Let the given number be }}x \cr
& {\text{Then,}} \cr
& \Leftrightarrow {x^2} - 25 = {\left( {x - 25} \right)^2}{\text{ }} \cr
& \Leftrightarrow {x^2} - 25 = {x^2} + 625 - 50x \cr
& \Leftrightarrow 50x = 650 \cr
& \Leftrightarrow x = 13 \cr} $$
Question 447. How many perfect squares lie between 120 and 300 ?
  1.    5
  2.    6
  3.    7
  4.    8
 Discuss Question
Answer: Option C. -> 7
$$\eqalign{
& {\left( {11} \right)^2} = 121{\text{ }} \cr
& {\text{And }} \cr
& {\left( {17} \right)^2} = 289 \cr} $$
So, the perfect squares between 120 and 300 are the squares of numbers from 11 to 17.
Clearly, these are 7 in number.
Question 448. What percentage of the numbers from 1 to 50 have squares that end in the digit 1 ?
  1.    1%
  2.    5%
  3.    10%
  4.    11%
  5.    20%
 Discuss Question
Answer: Option E. -> 20%
The squares of numbers having 1 and 9 as the unit's digit end in the digit 1.
$$\eqalign{
& {\text{Such numbers are,}} \cr
& 1,9,11,19,21,29,31,39,41,49{\text{ i}}{\text{.e}}{\text{.,}} \cr
& {\text{There are 10 such numbers}}{\text{.}} \cr
& \therefore {\text{Required percentage}} \cr
& = \left( {\frac{{10}}{{50}} \times 100} \right)\% \cr
& = 20\% \cr} $$
Question 449. Which of the following is closest to $$\sqrt 3 = \,?$$
  1.    1.69
  2.    $$\frac{{173}}{{100}}$$
  3.    1.75
  4.    $$\frac{9}{5}$$
 Discuss Question
Answer: Option B. -> $$\frac{{173}}{{100}}$$
$$\eqalign{
& \,\,\,\,\,\,\,\,\,\,1|\overline 3 \,.\,\,\overline {00} \,\,\overline {00} \,\,\overline {00} \,(1.732 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,|1 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& \,\,\,\,\,\,27|\,\,2\,\,\,00 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,1\,\,\,89 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,| - - - - - - - - \cr
& \,\,\,343\,|\,\,\,\,\,\,\,\,\,11\,\,00 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,10\,\,29 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& 3492\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,71\,\,00 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,69\,\,84 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,| - - - - - - - \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,16 \cr} $$
$$\eqalign{
& \therefore \sqrt 3 \cr
& = 1.73 \cr
& = \frac{{173}}{{100}} \cr} $$
Question 450. The number of perfect square numbers between 50 and 1000 is = ?
  1.    21
  2.    22
  3.    23
  4.    24
 Discuss Question
Answer: Option D. -> 24
The first perfect square number after 50 is 64 $$\left( {64 = {8^2}} \right)$$   and the last perfect square number before 1000 is 961 $$\left[ {961 = {{\left( {31} \right)}^2}} \right]$$
So, the perfect squares between 50 and 1000 are the squares of numbers from 8 to 31.
(31 - 8) + 1 = 24
Clearly, these are 24 in number.

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024